New paper in Optics Express about a geometric phase vortex triplicator grating
We published a new paper in Optics Express entitled Optimal triplicator design applied to a geometric phase vortex grating. It shows a liquid-crystal diffraction grating based on the optimal triplicator design fabricated as a geometric phase element. We analyze the polarization properties of this special diffraction grating and then use embedded spiral phases to design geometric phase vortex diffraction gratings. The fabrication of a two-dimensional version of such a design is demonstrated using a micro-patterned half-wave retarder, where the phase distribution is encoded as the orientation of the fast axis of the retarder.
This proof-of-concept element is made of liquid crystal on BK7 substrate where the orientation of the LC is controlled via photoalignment, using a commercially available fabrication facility. Experimental results demonstrate the parallel generation of vortex beams with different topological charge and different states of polarization.
This work is part of the PhD Thesis of David Marco, and it has been done in collaboration with our friends Aarón Cofré and Asticio Vargas, from Universidad de La Frontera, Temuco, Chile.