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A technique is performed to quantitatively evaluate the 
intensity and phase of the diffraction orders generated by 
tailored phase gratings displayed onto a liquid-crystal 
spatial light modulator (LC-SLM). The SLM displays the 
grating together with a lens to obtain the Fourier 
transform. The setup is converted into a polarization 
common-path interferometer by simply rotating a 
polarizer. This configuration allows applying a phase-
shifting interferometry algorithm to retrieve the phase of 
the diffraction orders. The quadratic phase arising in the 
system, which must be subtracted, is calibrated using 
triplicator gratings of varying periods. Various tailored 
designs with controlled phase shift between diffraction 
orders are experimentally tested to prove the advantage 
and simplicity of the technique. © 2022 Optica 
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Diffraction gratings are classical optical elements traditionally used 
in spectroscopy. The development of optical lithography in the 70’s 
changed their fabrication, offering highly precise control over very 
large scales, leading to other applications like laser tuning [1] and 
interferometers [2]. Binary-phase and multilevel gratings were 
developed in the 90’s for laser beam splitting [3]. Later, gratings 
with continuous phase profiles were designed to produce orders 
with arbitrary intensity and phase [4]. However, the physical 
realization of such continuous phase profiles was complicated. They 
were later demonstrated using the continuous phase modulation 
provided by a liquid-crystal (LC) spatial light modulator (SLM) [5].  

Although these design techniques allow a full control of the 
complex values at the diffraction orders, most of the research was 
devoted to control their intensities, and the interest in the phase 
content was limited to some applications in interferometry [6]. 
However, polarization diffraction gratings (PDG), gratings that 

produce diffraction orders with different polarizations, have 
nowadays become popular. They use continuous phase designs for 
two orthogonal polarizations, and they can be implemented with 
LC-SLMs [7], with geometric phase elements [8] or with 
metamaterials [9]. In all cases, the relative phase between 
diffraction orders is the key parameter to control the polarization. 
Therefore, a method for quantitatively measuring the complex-
amplitude values of the diffraction orders is of great interest when 
evaluating the designs of such tailored gratings.  

For this purpose, we apply a common-path self-interferometric 
arrangement of the LC-SLM recently demonstrated with structured 
light [10]. The system changes from a standard intensity 
configuration to an interferometer configuration simply by rotating 
a polarizer. The interferometer configuration implies an additional 
quadratic phase in the Fourier plane that must be compensated, 
especially if the observed field is large. Therefore, we here improve 
the previous system by implementing a calibration procedure 
based on the optimal triplicator grating design [11].  

 

Fig. 1. (a) Scheme of the optical system. SF: spatial filter; QWP: quarter-
wave plate; P: linear polarizer. Phase functions displayed on the LC-
SLM: (b) Diffraction grating (c) Lens (d) Combined hologram. 
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Figure 1 shows the experimental setup. A linearly polarized He-
Ne laser (Melles-Griot 05-LHP-991, with wavelength ) is 
spatially filtered and collimated. A quarter-wave plate (QWP) 
converts it into circularly polarized, so a first linear polarizer (P1) 
can be rotated without changing the input intensity. The beam 
illuminates a reflective parallel-aligned LC-SLM (Hamamatsu 
X10468-01, with 800×600 square pixels,  pixel pitch and 
98% fill factor). The reflected beam is directed to a camera detector 
(Basler scA1390-17fc, with 1390×1038 square pixels of  
size). A second polarizer (P2) oriented at 45º with respect to the LC 
director axis is placed in this reflection path. 

The SLM displays a phase-only computer-generated hologram 
(CGH) , , that combines a grating 

 and a converging lens , where 

r  is the radial coordinate and f  is the encoded focal length. The 
input polarization component parallel to the LC-SLM director axis 
focuses at the plane located a distance f  from the SLM and the 
field takes the form , where  denotes the 
Fourier transform (FT), and  are the horizontal/vertical 
spatial frequencies. The spatial coordinates  at the 
Fourier plane are related as . Figures 1(b), 1(c) and 1(d) 
show an example of a grating, the lens and the CGH, where the 
phases are visualized as the gray levels addressed to the LC-SLM.  

In the standard configuration, P1 is aligned parallel to the LC 
director axis and, consequently, the input beam is fully focused. 
However, by rotating P1, the system is transformed into a 
polarization common path interferometer [10]. The polarization 
component perpendicular to the SLM director axis is unaffected and 
remains collimated. The second polarizer (P2) makes the two 
components interfere. The collimated beam acts as the reference, 
while the focused beam is the test beam. A constant phase can be 
added to the displayed CGH in order to change the interference 
condition, thus allowing the application of PSI algorithms to retrieve 
the phase at the FT plane. Let us note that the employed SLM is free 
of flicker. Nevertheless, if this were not the case, the related phase 
fluctuation would yield an additional DC component in the 
displayed hologram. Since it would not be focused, it would simply 
add to the background, slightly reducing the interference contrast. 

However, since the grating and the lens are both located in the 
same plane, the optical FT is not exact [12,13] and there is an 
additional quadratic phase , r '  being the 
radial coordinate at the FT plane. This phase cannot be ignored, 
especially for measurements far away from the center. In our 
previous work [10], this phase was simply compensated on the 
basis of the f  value encoded on the CGH. Here, this is quantitatively 
verified using the optimum phase triplicator grating [11], an 
analytical design defined by the continuous phase profile: 
 

,   (1) 

 
where  and p  is the grating period. This grating 
generates three equally intense zero and ±1 diffraction orders, with 
a total efficiency that exceeds . In [14] it was demonstrated 
that the ±1 orders have a phase shift  relative to the zero 
order. Therefore, the triplicator transmission can be written as  
 

,  (2) 

 
with . Its Fourier transform takes the form 

 

, (3) 

 
with . Figure 2 shows experimental results when the SLM 
displays CGHs with an encoded triplicator of periods , 
where  (the SLM pixel pitch). We use images of 
1024×1024 pixels to calculate the holograms and crop the central 
800×600 area to display them on the SLM. Here  is 
the period expressed in pixels (px) and we use parameter T  
to describe the spatial frequency of the gratings. Figure 2 
shows results for  and , corresponding to periods 
of px  and  respectively. Such large periods 
ensure that the gratings are not affected by phase 
quantization. Also, a large focal length  is selected to 
avoid aliasing in the lens function.  

 

Fig. 2. Intensity (first row), two interferograms with a relative  phase 
shift (second and third rows) and measured phase (fourth row) for 
triplicator gratings with different frequency: (a) , (b) . 

Each case in Fig. 2 shows four images. The top one is the intensity 
captured in the standard configuration achieved when P1 is aligned 
with the SLM director axis. These images verify the generation of 
three equally intense diffraction orders, with a separation that 
increases with T . The second and third rows show two 
interferograms obtained when P1 is rotated. Now the camera 
shows a background due to the unfocused beam, and the 
interference is observed at the location of the diffraction orders. 
Before applying the PSI algorithm, two adjustments are necessary: 
1) a constant phase is added to the CGH to put the reference beam 
in phase with the diffracted field, and 2) P1 is rotated to match the 
amplitudes of the reference and the diffracted beam, to get a high 
contrast. The two interferograms shown in each case in Fig. 2 are 
obtained by adjusting the constant phase to provide destructive and 
constructive interference in the ±1 orders respectively, as viewed in 
the corresponding dark and bright spots. 

By applying additional constant phase steps, the phase difference 
between orders can be retrieved using classical PSI algorithms [10]. 
The result is displayed on the fourth row in each case, where a color 
code enables to distinguish these phases from the CGHs. The 



experimentally measured phases are presented in the range 
 and only on the pixels where the intensity is significative, 

with values over 5% of the maximum. The phase indicated on each 
order is the average value over the significative pixels, relative to the 
phase of the zero order, which is taken as the reference. These 
averaged values show a standard deviation below in most of 
the measured diffraction orders. According to [14], the phase 
between the zero order and the ±1 orders must be . However, 
the interference condition shown in the interferograms in Fig. 2 is 
observed to change with T ,thus denoting an extra phase. Namely, 
the quadratic phase caused by the non-perfect FT configuration. 

The procedure was repeated for different T  values, and for 
triplicators diffracting in vertical direction and the difference with 
respect the theoretical value  was calculated. The graph in Fig. 
3 shows the result as a function of the radial coordinate, expressed 
in pixels of the camera, where the phase function was unwrapped. 
The curve matches the expected quadratic profile with a correlation 
coefficient of . The inset shows  on the complete 
area of the camera, reaching around  at the corners. Figure 3(b) 
shows the intensity when a horizontal and a vertical triplicators are 
combined, thus yielding nine equally intense diffraction orders. 
However, their phase content is different, as shown in the 
interferogram in Fig. 3(c). While the ±1 orders along horizontal and 
vertical directions are  phase-shifted with respect to the 
central order, the four diagonal orders are  phase-shifted, a 
situation that was indirectly verified in [14] with a geometric phase 
grating regarding the polarization changes. Here, the experimental 
phase (Fig. 3(d)) retrieved from PSI (after compensating the 
quadratic phase) provides a direct measurement that agrees very 
well with the expected result. 

 

Fig. 3. (a) Experimental quadratic phase profile measured at the FT 
plane. The inset shows its values at the complete area of the camera 
array. Nine diffraction orders generated by two crossed triplicators with 

: (b) intensity, (c) interferogram and (d) phase. 

Once the quadratic phase is determined, the procedure can be 
applied to other gratings. As a first example the detour phase caused 
by a lateral shifting of the grating is visualized. If the grating g(x) is 
displaced with respect to the lens by , the FT is transformed to 

. This additional linear phase 
changes the phase of the triplicator ±1 orders , so their 
phases relative to the zero order become .  

Figure 4 shows the results for gratings with Figure 4(a) 
illustrates the CGH functions when the triplicator grating already 
presented in Fig. 1(d) is displaced by ,  and 

. The intensity distribution (Fig. 4(b)) does not change 
with . However, the measured phases do change. Figure 4(c) 
shows the result for the centered grating , where values 
very close to those expected  are retrieved. For 

, phases should change to  and . The 
experimental values confirm this result, where now the -1 order is 
in phase with the zero order. On the contrary, for a half-period 
displacement  there is an additional  phase-shift at 
the ±1 orders, thus . Finally, for , the situation 
is inverted with respect to . In all cases, the measured 
phases agree well with the expected values. 

 

Fig. 4. (a) CGH displayed onto the SLM for triplicator gratings with 
 and lateral displacements , ,  and 

. Experimental distributions (b) intensity, and (c) phase. 

Finally, two continuous phase gratings are designed to provide a 
relative intensity and phase shift between orders. The design 
follows the procedure described in [5] based on the theory of 
optimum laser beam-splitting gratings [4]. This procedure consists 
of determining a continuous phase function  that generates a 
desired pattern of diffraction orders, whose complex amplitude is 
defined by the Fourier series coefficient: 
 

, (4) 

 
k  denoting each of the target orders. The design procedure consists 
in selecting the N desired target orders and defining the desired 
relative  values. Then a function s(x)  is defined as 
 

,   (5) 



where  are numerical values of the amplitude and phase of 
each harmonic component of s(x) . These values are determined 
such that the phase-only function  fulfills 
the conditions imposed on  with the highest possible 
diffraction efficiency , defined as the ratio between the sum of 
intensities at the target diffraction orders relative to the total 
intensity. More details about can be found in [4,5]. 

We designed two gratings: Grating 1 is asymmetric with three 
target orders  and , with intensities 

 and phase shifts  and  of the second and 
negative first orders with respect to the first order. Grating 2 has 
target orders  and , all with the same intensity, and 
where orders  and  are in phase with the first order, while 
order  has a  phase-shift. Table 1 gives the numerical values 
of the imposed restrictions relative to the first order, the  
parameters and the nominal efficiency. Figure 5(a) shows one 
period of the continuous phase profiles  for these gratings. 

Table 1. Parameters of tailored gratings 

GRATING 1  

Target orders    

 1 1 2 

  0  

 0.9633 0.8189 1.2160 

 5.4613 2.3491 3.8993 

GRATING 2  

Target orders     

 1 1 1 1 

  0  0 0  

 1.5705 3.4063 5.1173 4.5725 

 4.8551 1.7143 1.7136 1.7141 

 
Figure 5 shows the results of Grating 1 and Grating 2. For the first 

design we also display the complex-conjugated version (Grating 
1CC). The intensity and phase of the diffraction orders were 
measured for gratings with . They show the generation of 
the target diffraction orders with the desired restrictions. For 
instance, Grating 1 shows a second order more intense that two 
equally intense ±1 orders (a weak zero order is also visible). The 
phase values are presented relative to the first order for Grating 1 
and 2 and also bear a very good agreement with the design values. 
Figure 5(c) shows the result for Grating 1CC which shows the 
reversed intensity pattern and opposite phases as that in Fig. 5(b). 
In this case the phase is presented relative to the minus first order. 

In summary, we applied a simple experimental technique to 
experimentally retrieve the phase of diffraction orders generated 
with tailored diffraction gratings. The technique is based on a self-
interferometer configuration of a LC-SLM, where the display is used 
simultaneously to implement the grating, a lens, and the phase-shift 
bias required in PSI algorithms. The experimental results confirm 
the designs and proves the usefulness of the technique to test 
tailored diffraction gratings before their fabrication with other 
advanced methods. This can be of particular interest in geometric-
phase gratings, where the phase-shift between orders is of great 
relevance for their polarization-diffraction properties. 

 

Fig. 5. (a) Phase profiles for three grating designs. (b) Experimental 
intensity and phase for: (b) Grating 1. (c) Grating 1CC. (d) Grating 2. 
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