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In this work we apply a phase-shifting interferometry (PSI) to evaluate the reconstruction of
complex-valued holograms displayed onto a phase-only spatial light modulator (SLM). The
interferometer is vibration-free since it uses a common-path polarization arrangement
based on the SLM itself, which is used simultaneously to display the hologram and to apply
the phase-shifting values. The change from the hologram display configuration to the
interferometer configuration involves only a rotation of a polarizer. The continuous phase
modulation provided by the SLM allows using PSI with arbitrary phase bias values. Several
examples are demonstrated by generating different combinations of modes with an
efficient on-axis hologram encoding technique.
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INTRODUCTION

The possibility of encoding arbitrary complex-valued fields in a light beam has led to the generation
of the so-called structured light, a research area that has received a great deal of attention [1, 2]. In
their most common configuration for this application, SLMs are typically arranged as parallel-
aligned liquid-crystal on silicon (LCOS) displays [3]. These are pixelated linear retarders that, under
illumination with linearly polarized light parallel to the liquid-crystal (LC) director, produce phase-
only modulation. This modulation response does not allow directly displaying complex-valued
holograms and several encoding techniques have been developed for this purpose [4–9]. In most
cases, the successful generation of the complex beam is verified by regarding the intensity in the far
field. In some cases, however, the phase distribution of the propagated field is also of interest, and it is
measured typically with a wave-front sensor or through interferometry [8, 10]. These are external
systems that must be added to the SLM setup generating the structured light beam to recover the
phase distribution, thus adding some complexity to the optical systems.

Phase-shifting interferometry (PSI) is a very efficient and accurate classical technique, where a
phase distribution is retrieved from a sequence of phase-shifted interferograms [11]. Although the
most common device for phase shifting is a piezoelectric transducer, LC retarders have also been
extensively used [12, 13]. LC-SLMs have been also exploited to build several interferometric and
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holographic systems [14]. On the other hand, the phase
modulation properties and/or aberration of LC-SLMs are
typically measured by introducing the device in an external
interferometer [15]. In the last years some works
demonstrated the use of the SLM itself to simultaneously build
the interferometer, either by displaying a diffraction grating [16]
or using the light reflected on the device coating [17]. These
techniques exploit a common-path interferometer, thus
becoming very simple, compact and vibration insensitive.

In this work we combine three well-stablished methods in a
simple and compact optical system: 1) a technique to encode
complex-valued holograms onto a phase-only SLM; 2) a common
path interferometer based on polarized light; and 3) the classical
PSI technique. The goal is to show how this combination can be
exploited to evaluate the quality of the propagated structured light
field, not only in intensity but also in its the phase distribution.
The hologram is displayed with a checkerboard grating technique
that provides on-axis reconstruction [7–9] The same system is
employed to retrieve the phase distribution in far field through a
PSI algorithm by simply rotating a polarizer. The technique is
demonstrated by producing different superpositions of Gaussian
modes [18]. The PSI algorithms provides quantitative phase
evaluation that complements the traditional intensity pattern
evaluation.

METHODS AND TECHNIQUES

Experimental Interferometric Arrangement
Figure 1 shows a scheme of the experimental arrangement. A
linearly polarized He-Ne laser (Melles-Griot 05-LHP-991, with a
λ � 632.8 nm wavelength) is spatially filtered and collimated. A
quarter-wave plate (QWP) converts it into circularly polarized.
This way, a linear polarizer (P1) can be rotated without changing
the light intensity. The beam illuminates a LCOS-SLM
(Hamamatsu X10,468-01, with 800 × 600 square pixels, 20 μm
pixel pitch and 98% fill factor). The SLM director axis is oriented
horizontally in the laboratory framework and produces more
than 2π phase variation at the operating wavelength [19]. It is

addressed with a hologram that includes a converging lens. A
camera (Basler scA1390-17fc, 1/2” active area, with 1,390 × 1,038
square pixels of 4.65 μm size) is placed on the back focal plane,
where the Fourier transform is focused.

The SLM displays a phase-only function that combines the
hologram with a converging lens, ϕ(r) � ϕH(r) + ϕL(r). Here r �
(x, y) denotes the spatial coordinates in the SLM, ϕH(r) is the
hologram phase function and ϕL(r) � −πr2/λf is the lens
function, where r � ������

x2 + y2
√

is the radial coordinate and f
the lens focal length. Since the LCOS-SLM has a horizontal
director axis, this phase affects only the horizontal polarization
component, which is focused on the camera. In the standard
operation in diffractive optics P1 is oriented horizontal so the
input beam gets fully modulated by ϕ(r). For other orientations
there is a vertical polarization component that is simply reflected
on the SLM and remains collimated. A second polarizer (P2),
oriented at 45°, placed before the camera, cause the interference of
the two components.

Complex Hologram Encoding
We encode complex-valued functions on the SLM with a well-
established technique that uses a modulated checkerboard
diffraction grating [7, 8]. This technique presents the
advantage of producing a reconstruction on axis, although it
might be severely affected if the SLM presents fringing [9]. Let us
consider the complex function F(r) � M(r)exp[iθ(r)], where
M(r) and θ(r) denote its magnitude (modulus) and phase
distributions respectively. M(r) is assumed normalized with
values in the range [0,1]. Then, a phase-only function is
calculated as

ϕH(r) � θ(r) + (−1)m+narccos[M(r)]. (1)
Here (m, n) ∈ [−N

2 , ..,−1, 0,+1 . . . , (N2 ) − 1] are integer indices
denoting the pixel coordinates which relate to the spatial
coordinates as (x, y) � (mΔ, nΔ), Δ being the pixel spacing
and the SLM array is assumed to have N × N pixels. The
term (−1)m+n is a checkerboard binary diffraction grating that
is modulated by arccos[M(r)]. Therefore, the phase-shift
between the two levels of the grating is δ � 2arccos[M(r)].
When M(r) → 1 then δ → 0, while δ → π when M(r) → 0. It
is well known that a binary phase diffraction grating has the
maximum diffraction efficiency when δ � π, leading to the
cancellation of the zero-diffraction order. On the contrary, when δ �
0 there is no grating, and all the light remains in the zero order. This
way, themagnitude of the zero-diffraction order is directlymodulated
by M(r) [8]. Finally, the original phase θ(r) is added to the binary
phase grating. When displaying the phase-only hologram ϕH(r),
regions whereM(r) is small diffract light out of the center, while the
beam remains on axis in the regions whereM(r) is high. As a result,
the complex function F(r) is well-reproduced on axis. The light
diffracted out of axis can be easily filtered with an aperture.

Figure 2 illustrates this encoding technique, applied to a
Laguerre-Gauss LG13 mode. Figures 2A,B show the intensity
distribution [M(r)]2 and the phase distribution θ(r)
corresponding to this mode. The intensity shows the
characteristic double ring pattern while the phase shows two

FIGURE 1 | Scheme of the optical system. SF: spatial filter; QWP:
quarter-wave plate; P: linear polarizer; CGH: displayed phase-only computer-
generated hologram.
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spiral phase patterns, with a π phase-jump located at the radius of
the dark ring. Figure 2C shows the hologram function ϕH(r)
after applying Eq. 1. Note that the checkerboard grating appears
at the regions with low intensity in Figure 2A (in the center, in the
dark ring and in the corners), while it disappears in the location of
the two bright rings. Finally, Figure 2D shows the pattern after a
phase lens pattern is added, this being the final phase function
ϕ(r) � ϕH(r) + ϕL(r) that is transformed into gray-levels (CGH,
in Figure 1) to be displayed on the LCOS-SLM.

Common-Path Interferometer
We are interested in experimentally evaluating the hologram
reconstruction in the Fourier plane by measuring the intensity
and the phase distributions, although the same technique
could be applied to Fresnel or fractional Fourier planes. In
our approach we use the LCOS-SLM itself to generate the
interferometer, thus avoiding any additional components. We
follow the scheme presented in [20]. This is based on rotating
the input polarizer (P1) so a significant component of the input
beam is oriented perpendicular to the LC director of the SLM.
This non-modulated polarization component is the reference
beam. The second polarizer (P2) produces the interference of
the modulated test beam and the reference beam in a common-
path configuration, with significant advantages of alignment
and stability.

While in ref. [20] the interferometer was demonstrated, here we
perform quantitative phase measurements. To this aim we apply
the well-known PSI algorithms by adding a known constant phase-
shift φ between two beams [11]. The test beam can be considered to
have the same functional form FG(r) � MG(r)exp{i[θ(r) + φ]} in
the Fourier plane since we are encoding Gaussian beams. The

reference beam remains constant as FR(r) � R0 since it is not
affected by SLM. Therefore, the intensity captured at the camera is
given by I(r) � |cos(χ)FG(r) + sin(χ)FR(r)|2 where χ is the angle
between polarizer P1 and the LCOS director axis. Thus

I(r) � cos2(χ)[MG(r)]2 + sin2(χ)R2
0

+ 2sin(χ)cos(χ)MG(r)R0cos[θ(r) + φ

2
]. (2)

Given the continuous phase modulation provided by the
LCOS-SLM, it is simple to add a constant phase φ to the
hologram. This way, the synchronous detection PSI technique
[11] can be applied with an arbitrary number N of
interferograms In(r), each with a relative phase shift φn, n �
0, 1, 2 . . .N − 1.

If the phase steps are evenly distributed in the range (0, 2π),
the phase function can be retrieved as [11]:

α(r) � −arctan
⎧⎪⎨⎪⎩∑N−1

n�0 In(r)sin(φn)∑N−1
n�0 In(r)cos(φn)

⎫⎪⎬⎪⎭. (3)

Well-established classical algorithms are the three-step algorithm,
with phase-shifts φ0 � 0, φ1 � π/2 and φ2 � π, leading to

α3(r) � −arctan{I2(r) − I1(r)
I1(r) − I0(r)}, (4)

or the standard four-step algorithm, which adds a fourth phase
shift φ3 � 3π/2, leading to the classical relation

α4(r) � −arctan{I3(r) − I1(r)
I2(r) − I0(r)}. (5)

RESULTS AND DISCUSSION

To illustrate the procedure, Figure 3 shows a first set of experiments
where we encode a Hermite-Gauss and a Laguerre-Gauss beam.
Figures 3A,B show the HG33 characteristic intensity and phase
patterns. The phase distribution is plotted only with the color code in
the pixels where the intensity distribution is greater than 5% of the
maximum intensity. The rest are plotted gray since they are not
significant in comparison with the experimental results. Figure 3C
shows the camera capture which shows the successful realization of
the intensity distribution. For this experiment, the input polarizer
(P1) was aligned with the LCOS director, so χ � 0 in Eq. 2 and
I(r) � [M(r)]2.

To retrieve the phase distribution, we rotate P1 such that a
significant portion of the input beam is not modulated. The
interference pattern is shown in the second and third rows in
Figure 3. We apply N � 8 different phase-shifts with a constant
phase step of Δφ � π/4. In this case Eq. 2 leads to the following
relation for the measured phase:

α8(r) � −arctan{2(I0 − I4) +
�
2

√ (I1 − I3 − I5 + I7)
2(I2 − I6) +

�
2

√ (I1 + I3 − I5 − I7)}. (6)

FIGURE 2 | Illustration of the complex encoding technique. LG13 mode
(A) intensity [M(r)]2 and (B) phase θ(r) distributions. (C) Phase-only function
ϕH(r) encoding the complex function with the checkerboard grating
technique. (D) Phase function ϕ(r) � ϕH(r) + ϕL(r) when a lens
is added.
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The angle of the polarizer P1 was adjusted to achieve the best
contrast before capturing all the sequence of interferograms.
Interferograms I2 and I6 in Figure 3, corresponding to phase
shifts φ2 � π/2 and φ6 � 3π/2, show the best contrast. On the
contrary, the contrast is very low in interferograms I0 and I4, as
expected from the binary π -phase pattern of this mode. The
interferograms in Figure 3 have been saturated for better
visualization, but equivalent non-saturated images were used
in the calculations.

We note that, since the hologram and the lens are both
displayed on the SLM, the phase in the detector also includes
a quadratic phase factor given by −ϕL � +πr2/λf [21]. The
experimental phase shown in Figure 3D is the result given by
Eq. 6 where this quadratic phase has been subtracted, showing a
very good agreement with the numerical phase. The phase is
visualized again with the color code only at pixels where the
intensity distribution in Figure 3C is significant, leaving the

experimental phase image in gray at pixels where the intensity
is too low to provide a contrasted interference.

Note that the PSI technique can only retrieve a wrapped
phase map, here presented in the range [−π,+π]. The absolute
determination of the phase would require the application of
phase unwrapping techniques. Nevertheless, the color code
used to display the phase (where red is used for values ± π)
avoids jumps caused by 2π discontinuities. To provide a
quantitative comparison of the phase distributions, the
experimental function was resized αexp(r) to match the
scale of the simulated distribution αsim(r). Then, the phase
RMSE (Root-Mean Square Error) was used as a metric,
defined as:

RMSE �
���������������������
1
T
∑

r
(αsim(r) − αexp(r))2√

. (7)

Here the summation is made only in the region with
significant pixels and T is the total number of such pixels.
For the HG33 beam the calculated phase RSME is 0.243π.

Figure 3 shows equivalent results for the LG13 beam. The
theoretical intensity and phase distributions (Figures 3E,F)
exhibit its characteristic double ring and spiral pattern. In
this case, the experimental interferograms show three bright
and three dark lobes inside each of the two intensity rings. The
bright and dark lobes are opposite from one ring to the other, as
corresponds to the π -phase shift between them, and they
progressively rotate as phase-shifts are added in successive
interferograms. The experimental distributions shown in
Figures 3G,H agree very well the theory, with a phase RMSE
of 0.287π.

We further tested different superpositions of LG beams. The
first and second rows in Figure 4 show their theoretical intensity
and phase distributions. The third and fourth rows show the
corresponding experiments. As in the previous figures, the phase
distributions are plotted with the color code only where the
intensity distribution is significant. All cases bear a very good
agreement. Note for instance how the simplest case, the LG01

mode (Figure 4A) exhibits the classical doughnut shape and a
spiral phase pattern. This case provides the best phase RMSE of
only 0.154π.

The collinear superposition of LG beams has been
performed by several ways. For instance, in [22] we
demonstrated a system with two SLMs, each encoding one
mode, which interfere after passing through a polarizer.
Here, instead, we numerically calculate the superposition
and display it in a single SLM, similar to what was done
previously in [18]. In that work, the verification of the
experimental phase was performed by simply regarding
an interference pattern. Here, we apply the proposed
common-path PSI technique to achieve a quantitative
evaluation.

Figure 4B,C show respectively the superposition of the
fundamental mode LG00 with the LG03 mode and with the
LG06 mode. Here the LG00 mode provides light on axis despite
the axial phase singularity of the LG03 or the LG06 modes.
However, their interference exhibits intensity patterns with

FIGURE 3 | Realization of a HG33 (A–D) and LG13 (E–H) beam.
Theoretical intensity (A,E) and phase (B,F) distributions. Experimental
intensity (C,G) and phase (D,H) distributions. The phase distribution of each
beam is retrieved from the interferograms shown below each case with
eight consecutive phase shifts of step Δφ � π/4.
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three and six dark spots respectively. The phase pattern presents a
constant value in the center and a spiral distribution at the outer
part. In between there are points where the phase completely
twists around, which coincide with the dark spots in the intensity.
The corresponding experimental results displayed in the last two
rows corroborate these patterns.

Figure 4D,E present results of the superpositions LG10 + LG03

and LG10 + LG06 respectively. Here both intensity patterns show a
bright spot in the center, caused by the LG10 mode. However, in
contrast to the case in Figure 4C, the intensity has dark lines
separating the central bright spot from the external lobes, with
three outer spots in Figures 4D and six outer spots in Figure 4E.
The phase patterns are again constant in the center and spirals in
the outer region, but the region in between shows different
distributions. The experiments again show a good agreement
with the theory. In these results the Gouy phase difference on the
propagation was compensated since it can cause a rotation of the
patterns [23].

Figure 4F,G more sophisticated patterns obtained by the
superposition of three and four different LG modes. Figure 4F
illustrates the LG02 + LG0,11 + LG0,20 superposition. Here, the
three modes present a phase singularity on axis, thus creating a
central dark spot. However, the higher the mode azimuthal
order, the larger the radius of the ring of maximum intensity.
As a result, the intensity pattern shows a central bright ring,
while the outer part exhibits bright lobes separated by regions
with two dark spots at two radial coordinates. The phase
distribution shows a complicated pattern. However, singular

points where the phase makes a complete cycle are clearly
visible, which coincide with the dark spots in the intensity.
Despite the higher increased complexity of this superposition,
the experimental distributions show a good agreement with
theoretical results.

Finally, Figure 4G shows the superposition of four modes,
LG01 + LG05 + LG0,30 + LG0,−30. All these modes present a
singularity on axis and the center shows a dark spot. Near the
center, four dark spots are yielded by the interference of the
LG01 and LG05 modes. LG0,30 and LG0,−30 modes have such a
large azimuthal order that their intensity is located far from
the center, where they create an azimuthal interference (“petal
beam”). Again, the experiments reproduce well the expected
patterns. This case shows the fastest spatial variations in the
phase distribution, especially in the binary pattern at the
outer ring. Therefore, any slight shift of the experiment
compared to the simulation yields a higher error compared
to other cases, showing the highest RMSE phase value of
0.425π.

All the results presented so far were obtained by applying
the PSI algorithm with eight phase steps described in Eq. 6. We
have also tested the results with fewer interferograms. For
instance, in Figure 4H we present the phase retrieved for two
cases, LG00 + LG03 (Figure 4B) and LG10 + LG03 (Figure 4D),
but now considering a PSI with four steps (Eq. 5) and with
three steps (Eq. 4). They again agree quite well with numerical
simulations. The RSME phase values for the LG00 + LG03 case
are 0.346π, 0.377π, and 0.380π for PSI with 8, 4, and 3 steps,

FIGURE 4 | Realization of different superpositions of LGmodes: (A) LG01 (B) LG0-1 (C) LG00 + LG06, (D) LG10 + LG03, (E) LG10 + LG06, (F) LG02 + LG0,11 + LG0,20,
(G) LG01 + LG05 + LG0,30 + LG0,-30. First and second rows show numerical simulations of the intensity and phase distributions. Third and fourth rows show the
corresponding experimental results. (H) Experimental phase distributions for the superpositions LG00 + LG03 and LG10 + LG03 (cases (B) and (D) respectively) when PSI
with 4 and 3 steps are considered.
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respectively. For the LG10 + LG03 case, RSME values are
0.412π, 0.443π, and 0.447π for 8, 4, and 3 steps,
respectively. As expected, the RSME increases as less
interferograms are used.

CONCLUSION

In summary, we have presented a PSI technique to evaluate the
phase distribution of holograms displayed on a phase-only LCOS-
SLM. Complex-valued Fourier transform holograms are encoded to
generate different kinds of Gaussian beams. Results are given for
intensity and phase retrieval of several cases.

The interferometric technique is based on a common-path
polarization arrangement in which the LCOS SLM is used to
simultaneously display the hologram and to apply the phase-
shifting values required to retrieve the phase distribution. A
simple rotation of a polarizer changes from a hologram
configuration leading to the pure intensity recovery, to a
common-path interferometric arrangement useful to measure
the phase. Hence, the phase distribution of the beam can be
recovered with no need of adding any extra-interferometer or
wave-front measurement system.

Results show an excellent agreement with the theory, thus
confirming the successful generation of structured light, not

only in its intensity but also in its phase distribution, which
probes the accuracy and advantage of the technique.
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