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Abstract: In this work, a geometric phase liquid-crystal diffraction grating based on the 
optimal triplicator design is realized, i.e., a phase-only profile that generates three diffraction 
orders with equal intensity and maximum diffraction efficiency. We analyze the polarization 
properties of this special diffraction grating and then use embedded spiral phases to design 
geometric phase vortex diffraction gratings. Finally, the fabrication of a two-dimensional 
version of such a design using a micro-patterned half-wave retarder is demonstrated, where 
the phase distribution is encoded as the orientation of the fast axis of the retarder. This proof-
of-concept element is made of liquid crystal on BK7 substrate where the orientation of the LC 
is controlled via photoalignment, using a commercially available fabrication facility. 
Experimental results demonstrate the parallel generation of vortex beams with different 
topological charge and different states of polarization. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The design and realization of diffraction gratings of evenly distributed intensity among a 
number of diffraction orders has been extensively studied. One initial approach that became 
very popular are Dammann gratings [1], which consist on gratings with a binary profile, 
where the transition points must be conveniently selected to provide the desired number of 
equally intense orders. Since then, this field continued to receive attention and applications 
such as diffractive elements for beam splitting and optical array illuminators were developed 
[2]. In 1998, Franco Gori and his associates introduced the analytical derivation of the 
optimal phase triplicator [3], a diffraction grating with a continuous phase-only profile that 
generates three diffraction orders (zero order and plus and minus first orders) with equal 
intensity and maximum diffraction efficiency. Although fabricating a grating with a 
continuous profile is more complicated than making binary profiles, the efficiency of Gori’s 
design (about η = 93%) is very attractive, and the simplicity and beauty of its analytical 
expression makes it very easy to program and implement in a phase-only spatial light 
modulator (SLM) [4,5]. Some years after Gori’s design, Romero and Dickey developed a 
generalized theory for designing continuous phase-only gratings that generate an arbitrary 
number of diffraction orders [6]. 

The interest of such grating profiles is not only limited to standard diffraction gratings. If 
combined with other phase functions (like those representing a lens or a helical plate), they 
can yield vortex gratings generating diffraction orders of different topological charges [7–9], 
or creating a three-dimensional array [10]. These vortex gratings have been extended to more 
complicated diffraction gratings in order to obtain vector beams. This is usually done by 
employing SLMs in different arrangements [11–13] to create the superposition of two beams 
with orthogonal polarizations and opposite vortex charge [14]. 
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Despite the great flexibility that SLM offer, their use implies the realization of bulky 
systems. An alternative for making such elements more compact is based on encoding them 
as geometric phase (GP) elements, also known as Pancharatnam-Berry phase elements 
[15,16]. These are spatially variant half-wave retarders, where the orientation of the principal 
axis changes in-plane according to a given function. When illuminated with circularly 
polarized light, GP diffractive elements change the helicity of the circular polarization, but 
also imparts to the beam a phase function equal to twice the angular orientation of the 
retarder’s principal axis. This way it is possible to create planar diffractive optical elements. 

GP diffractive elements can be fabricated by photo-aligning liquid-crystals LC) [15,17]. 
LC based GP elements can be reconfigurable upon applying a voltage [18] and consequently 
the operating wavelength can be tuned. Instead, they can operate in a wide spectral range 
when based on cholesteric LC structures [19]. More complex designs involve not only 
controlling the orientation of the spatial retarder, but also the spatial variation of an additional 
phase, thus encoding two independent phase functions onto the two circular polarizations 
[20]. In this case, these elements are typically fabricated by nanostructuring metasurfaces 
[21]. While metamaterial-based GP elements are advantageous in terms of much higher 
energy damage threshold which renders them especially appropriate for operation with high-
power lasers, LC based GP elements are easier to fabricate and represent a lower-cost method 
of fabrication. In fact, commercially available GP elements, such as vortex retarders and 
polarization sensitive lenses, can be exploited to design new optical systems [22]. In addition, 
some manufacturers offer the possibility to fabricate GP elements on demand, designed by the 
user. 

This is the case in this work. Here we present the design and characterization of a special 
liquid-crystal GP diffraction grating. It creates a bidimensional array of 3 × 3 diffraction 
orders, obtained by combining two phase-only Gori’s triplicators, one along the horizontal 
direction and another along the vertical direction. In addition, spiral phases of charges 1=  
and 3=  are embedded in each direction. As a result, the grating generates in these nine 
diffraction orders vortex beams with topological charges that change from 4= −  to 4= + . 

This diffraction grating is then fabricated as a GP diffractive element. For that purpose, 
we benefit from the facility provided by Thorlabs Inc. to fabricate customized liquid-crystal 
patterned retarders. These are composed of an array of microretarders with different 
orientation of the fast axis [23]. In our case, we ordered a custom half-wave retarder for the 
wavelength of 632.8 nm, where the axis alignment of the microretarders follow the above-
mentioned diffraction grating profile. As a result, the designed grating is encoded as a GP 
diffraction grating. We demonstrate the expected array of vortex beams with different charges 
when the grating is illuminated with circular polarization. The polarization conversion is 
achieved when the grating is illuminated with circularly polarized light. When it is 
illuminated with linearly polarized light, however, the central order shows a different 
polarization conversion with respect to the lateral orders. We show that this a consequence of 
Gori’s triplicator design, that includes a π/2 phase shift between the central order and the two 
lateral orders, which was not reported before. We note that a closely related design was 
presented recently in [24], where a 2D triplicator grating was combined with a spiral phase 
and fabricated as a GP metasurface. Our design differs, since it yields different charges onto 
different orders (opposed to the design in [24] where the same charge is obtained in the 3 × 3 
diffraction orders). 

The paper is organized as follows: after this Introduction, section 2 describes the grating’s 
design, where a first part reviews Gori’s triplicator. This scalar analysis is extended to a GP 
grating in Section 3, thus requiring a vector analysis that is based on the Jones matrix 
formalism. Section 4 describes the experimental system and discusses the experimental 
results, which demonstrate an excellent agreement with the expected results. Finally, Section 
5 summarizes the conclusions of the work. The Appendix included at the end contains the 
required mathematical derivations for the sake of clarity. 
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2. The scalar grating design 

In this section we describe the design of the phase vortex grating. First, we review Gori’s 
design in a pure scalar treatment. Then we extend it to its application to a fork grating, i.e. a 
blaze grating with an embedded spiral phase. Finally, we describe the polarization effects 
when this grating profile is implemented as a geometric-phase diffractive element. 

2.1. Gori’s triplicator phase-only profile 

As mentioned, in [3] Gori and his associates developed an analytical solution for the scalar 
phase-only triplicator, i.e., a diffraction grating exhibiting a continuous phase-only profile 
that generates three diffraction orders (zero and ± 1) of the same intensity and reaching the 
maximum diffraction. The phase profile they derived is given by 

 
2

( ) arc tan cos ,
x

x a
p

πφ
  

=   
  

 (1) 

where x denotes the transversal coordinate, p is the grating’s period and a = 2.65718 is a 
numerical constant derived in [3]. We note here that in Gori’s paper, the cosine function in 
Eq. (1) is instead a sine function, but this only implies a half period lateral displacement of 
the grating. We selected the cosine function in Eq. (1) because we found it simpler to analyze 
the Fourier spectrum, calculation that is presented in the Appendix of this manuscript. 

The transmittance of the triplicator grating is given by 
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where τn indicate the Fourier transform coefficients: 
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According to [3], the square magnitude of the three main diffraction orders is |τ0|
2 = |τ+1|

2 = |τ-
1|

2 = = 30.85%, rendering a total diffraction efficiency η = |τ0|
2 + |τ+1|

2 + |τ-1|
2 = 92.56%. We 

note that this triplicator optimal efficiency is notably higher than that provided by the 
Dammann grating producing three diffraction orders, which is only of 66.42% [4,25]. 

Figure 1(a) shows three periods of the phase profile φ(x) given by Eq. (1) (black curve), 
which is compared with a linear blazed phase grating of the same period (blue curve). One 
interesting characteristic to note about Gori’s triplicator profile is that the phase modulation 
changes from a minimum value of −0.39π to a maximum value of + 0.39π, thus only 
requiring a total phase modulation of 0.78π to be perfectly displayed. Therefore, it is possible 
to implement it using SLM devices of very low phase levels [5]. Figure 1(b) illustrates the 
gray-level image that must be displayed onto a phase-only SLM to generate this triplicator. 

Given the very reduced intensity of the diffraction orders different than order 0 and ± 1, 
we can consider that the triplicator merely generates these three diffraction orders (Fig. 1(c)) 
and Eq. (2) can be approximated as 

 ( ) ( ) 0 1 1

2 2
exp exp exp .trip

x x
x i x i i

p p

π πτ φ τ τ τ+ −
   

= ≅ + + −      
   

 (4) 

An important point that was not analyzed by Gori et al. in [3] is the relative phase shift 
between these three diffraction orders. In the Appendix, it is shown that there is a π/2 phase 
shift between the + 1 and −1 orders with respect to the zero order, hence, they hold the 
following relation 

 1 1 0 .iτ τ τ+ −= =  (5) 
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As we show later, this i factor has crucial impact when this design is implemented with 
geometric phase. 

 

Fig. 1. (a) Gori’s triplicator phase profile compared to the linear blaze grating profile. (b) Gray 
level image to generate a triplicator in a phase-only SLM. (c) Schematics of the triplication 
grating action. 

2.2. The vortex triplicator grating 

Figure 1(a) can be viewed as a phase look-up table (LUT) that assigns the phase of the 
triplicator profile to the corresponding phase value of the blazed (linear) profile, i.e. 

 ( ) ( ) ,trip linearx xτ τ=   LUT  (6) 

where τlinear(x) = exp(i2πx/p). In this way, the phase LUT applies to all the phase values 
ranging from -π to + π, and the triplicator design can be extended to more complex optical 
functions, different than a simple diffraction grating. An equivalent approach was applied for 
instance in [8] to binary phase Dammann grating profiles. 

This is the case of the fork blazed phase grating. This grating is obtained by adding a 
spiral phase pattern to a linear blazed grating, whose transmittance is given by: 

 ( ) 2
, =exp .fork

x
x i

p

πτ θ θ
  

+  
  

  (7) 

This phase-only function can be regarded as a blazed diffraction grating which generates a 
single first-order diffraction order that carries a vortex of charge  . If this phase profile is 
modified, the other diffraction orders appear, with different topological charges. Different 
types of modifications of this blazed vortex grating have been demonstrated, including binary 
phase or Dammann grating type profiles [26–29]. 

By applying the LUT in Fig. 1(a) to this fork blazed grating, the optimum triplicator 
version of the fork grating is obtained. This is shown in Fig. 2. The addition modulo 2π of a 
linear phase grating and a spiral phase of charge 1= , see Fig. 2(a), results in the classical 
fork phase-only grating as shown in Fig. 2(b). This grating, when illuminated with a plane 
wave, generates a single first order diffracted vortex beam that carries a topological charge 

1= . When the triplicator LUT is applied to this blazed vortex grating the resulting grating 
(Fig. 2(c)) shows the fork grating shape, but its profile adopts the form of the triplicator, as in 
Fig. 1(a)). 

Mathematically, the application of the triplicator LUT results in the same Fourier series 
expansion as in Eq. (2), i.e.: 
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To simplify the analysis, we consider only the diffracted orders nx = 0, and nx = ± 1, all of 
them having the same magnitude |τ0, ± 1| = 0.555 (equal intensities |τ0, ± 1|

2 = 0.3085), but with a 
relative phase shift given by Eq. (5). Thus, within this approximation Eq. (8) can be written as 
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The first term in the right side of Eq. (9) corresponds to the zero order, with no topological 
charge. The other terms are two linear phases corresponding to the first and to the minus first 
diffraction orders, which carry charges   and −  respectively. Note that this grating diffracts 
in the horizontal direction. The above equation can be rewritten in a more compact way as 

 ( ) 0
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where the cosine term includes the nx = + 1 and nx = −1 orders of charge   and − , 
respectively. 

Next, another equivalent triplicator grating is designed, but now oriented to diffract in the 
vertical direction. For that purpose, we use another fork grating from a blazed grating of the 
same period and a spiral phase pattern with 3= , as shown in Fig. 2(d). Its combination, 
shown in Fig. 2(e), is again modified according to the triplicator profile, resulting in the 
pattern in Fig. 2(f). This grating generates three diffraction orders in the vertical direction. 
Once again, the zero diffraction order does not have vorticity, but the vertically diffracted 
beams, ny = + 1 and ny = −1, carry vortices of charges 3=  and 3= −  respectively. 

 

Fig. 2. Scheme showing the design procedure to achieve the 3x3 vortex grating design with 
optimal efficiency. 

Finally, we combine both triplicator vortex gratings by making their product, i.e., by 
adding modulo 2π the two phase-only functions. The resulting phase pattern is a 2D 
diffraction grating as shown in Fig. 2(g), that creates an array of 3 × 3 diffraction orders, as 
shown in Fig. 3. The transmittance of this 2D grating is obtained from the multiplication of 
two terms like in Eq. (10) for the x and y directions: 
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where we made explicit the topological charges of 1 and 3 for the x and y directions 
respectively. 

This product can be expanded to read as: 
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The first unit term is the zero order, while each cosine term represents a pair of ± 1 
diffraction orders. Note that the first and third cosine terms, which correspond to the orders 
diffracted along the horizontal (nx = ± 1, ny = 0) and vertical direction (nx = 0, ny = ± 1) 
respectively, are pure imaginary and therefore have a π/2 phase shift with respect to the zero 
order. On the contrary, the second and fourth cosine terms in Eq. (12), which correspond to 
the orders diffracted along the diagonal directions, are real. The second cosine term 
corresponds to the anti-diagonal diffraction orders (nx = −1, ny = + 1) and (nx = + 1, ny = −1), 
while the fourth cosine term corresponds to the diagonal orders, (nx = ny = + 1) and (nx = ny = 
−1). 

Equation (12) also reveals that the topological charge changes on each diffraction order as 

 ( ), 3 ,x y x yn n n n= +  (13) 

where (nx,ny) are the pair of indices indicating the diffraction order (nx,ny = + 1,0,-1). 
Therefore the topological charges take values + 4, + 3…, 0,…-3, −4, at the nine diffraction 
orders. Figure 3 illustrates the array of 3 × 3 orders yielded by the grating design in Eq. (12), 
with indication of the topological charge at each diffraction order defined by the pair of 
indices (nx,ny). 

 

Fig. 3. Scheme of the expected array of diffraction orders and the corresponding topological 
charges. The pair of numbers on each diffraction order denote the order (nx,ny). 

3. The geometric phase 2D vortex grating 

In this work, we build the transmission profile of Eq. (12) as a geometric phase element, 
where the phase function φ(x,y) is encoded as the rotation angle α of the principal axis of a 
half-wave retarder. Figure 4(a) illustrates this method. The Jones matrix for a half-wave 
retarder with orientation α is given by: 
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In a geometric phase element, α is a spatially-variant function given by α(x,y) = φ(x,y)/2 
where φ is the phase to be encoded. Q-plates are a particular case where a spiral phase is 
encoded as geometric phase [30]. 

The above matrix can be expressed as: 
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If we consider a phase-only function corresponding to a diffraction grating as those described 
above, τ(x,y) = exp[iφ(x,y)], it is convenient to write Eq. (15) in the following form: 

 ( ) ( ) ( )1 0 0 1
Re Im .

0 1 1 0
τ τ τ   

= +   −   
M  (17) 

Note that the Jones matrix acting on the real part of τ corresponds to a half-wave retarder 
(HWR) with its axis oriented along the coordinate system. On the contrary, the Jones matrix 
acting on the imaginary part of τ corresponds to an aligned HWR plus a rotation of 90°. 

 

Fig. 4. (a) Illustration of the phase grating encoding as a geometric phase element. (b) Picture 
of the grating between crossed polarizers. (c) Detail of the center of the grating viewed through 
a polarizing microscope between crossed polarizers. (d) Fourier transform pattern, saturated on 
purpose in order to visualize how the energy is basically confined to the 3 × 3 target orders. 

Thus, if we apply the geometric phase to the phase profile in Eq. (12), Eq. (17) is given 
by: 

                                                                                        Vol. 27, No. 10 | 13 May 2019 | OPTICS EXPRESS 14478 



 

1 0 2 ( ) 2 ( )
1 2cos 2 2cos 4

0 1

0 1 2 2
2cos 2cos 3

1 0

M
y x y x

p p

x y

p p

π πθ θ

π πθ θ

      − += × − + − + +     −      
     

× + + +     
      

 (18) 

Equation (18) reveals a different polarization behavior in two sets of diffraction orders. For 
those in the first row in Eq. (18) i.e., orders ( + 1, + 1), (−1, + 1), (0,0), ( + 1,-1) and (−1,-1), 
the polarization transformation induced by the grating is equivalent to an aligned HWR. On 
the contrary, for those orders described in the second row in Eq. (18), i.e., orders (1,0), (0,1), 
(−1,0) and (0,-1), the polarization transformation induced by the grating is equivalent to that 
of an aligned HWR plus a 90° polarization rotation. 

4. Experimental system and results 

We next show a proof-of-concept experiment where we use a geometric phase grating made 
using the capability offered by Thorlabs Inc. to provide customized patterned retarders [23]. 
The 2D vortex triplicator grating was fabricated as a patterned retarder with half-wave 
retardance for the wavelength of 632.8 nm. The complete element is composed of an array of 
853 × 853 micro-retarders, each one of 30 × 30 μm2, thus the grating size is about 1” × 1”. 
The encoded grating was designed with a period p of 19 pixels. This large value was selected 
as a trade-off between having enough number of pixels per period to accurately reproduce the 
triplicator phase profile, and reaching a diffraction angle that, although small, is enough to 
separate the diffracted lowest vortex beams. Each micro-retarder has its fast axis aligned to a 
different angle, given by the designed phase mask. These patterned retarders are made of 
liquid crystals and liquid-crystal polymers and, using photo alignment technology, the fast 
axis of each micro-retarder can be oriented to any angle within a resolution of <1°. The 
grating was fabricated onto a BK7 substrate and with antireflection coating type A (for 350 - 
700 nm), and it was mounted onto a square kinematic mount from Edmund Optics (model 
#58-860). Figure 4(b) shows a picture of the mounted grating, viewed between crossed 
polarizers, while Fig. 4(c) shows a detail of the central part viewed through a polarizing 
microscope (Nikon Eclipse). The picture shows the center of the grating where the singularity 
is created. 

Let us now evaluate the diffraction pattern rendered by this grating. Figure 5 shows a 
scheme of the optical system. We use a 632.8 nm wavelength He-Ne laser beam that is 
spatially filtered and collimated. A quarter-wave retarder (Q) is used to generate circularly 
polarized light impinging on a polarization state generator (PSG) composed by a linear 
polarizer (P) and a quarter-wave retarder (Q). The PSG is applied in order to generate an 
arbitrary input state of polarization illuminating the geometric phase grating. Setting up the 
PSG requires changing the orientation of the polarizers; therefore, using circularly polarized 
light as input to the PSG ensures that the input intensity does not change when the PSG is 
reconfigured. 
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Fig. 5. Scheme of the experimental setup. PSG: polarization state generator; PSA: polarization 
state analyzer; Q: quarter-wave retarder; L: linear polarizer; L1, L2 converging lenses. 

Behind the grating, a polarization state analyzer (PSA) composed by another quarter-wave 
plate and another linear polarizer is used to analyze the generated beams. A converging lens 
of f = 100 cm focal length focuses the beam onto a CCD detector that captures the Fourier 
transform pattern. Figure 4(d) shows a capture of the Fourier transform plane. This result was 
obtained with input linear polarization and no PSA. The 3 × 3 vortex beam array is 
successfully obtained, in agreement with the expected result in Fig. 3. The focused beams 
exhibit the typical doughnut shapes, with increasing diameter according to the topological 
charges in each diffraction order. Note, however, that we are operating at the limit, since the 
beams that focus with largest diameters (those with charges 3= ±  and 4= ± ) are not 
completely separated and their interference causes some distortion. Nevertheless, this result 
represents a successful proof-of-concept of the vortex triplicator grating. 

Figure 4(d) shows a big area of the Fourier transform pattern, which is saturated on 
purpose. This is done to clearly visualize that the energy is basically concentrated in the 
central array of 3 × 3 central orders. Other higher diffraction orders, although weak, are 
visible, especially those located at diffraction orders ( + 3,−1) and (−3, + 1), where the total 
topological charge is cancelled and therefore the focused beam appears as a bright spot (they 
are marked with a yellow arrow). We experimentally measured the intensity of the 3 × 3 
central orders compared to the total intensity at the Fourier transform plane and obtained a 
ratio of about η ≈0.74. This value is lower, but not far, from the theoretical efficiency of a 2D 
triplicator grating, η = ηxηy = (0.926)2 = 0.857, due to the limited spatial resolution in the 
fabrication of the grating. 

In order to exhaustively analyze the polarization properties of the grating, Fig. 6 shows 
additional experimental results, where now only the central orders are shown. The PSG is 
configured to the six typical states used in polarimetry: linear states with orientations 0, ± 45° 
and 90°, and the two circular states right, and left. These polarization states are drawn as 
symbols on the left column in Fig. 6. For each PSG configuration, the PSA is first set without 
analyzer and is then set to transmit the six typical polarization states. These are indicated with 
the same symbols on the top of the figure. 
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Fig. 6. Experimental results of the Fourier plane for six different configurations of the PSG 
without analyzer (left column), and with six different configurations of the PSA. 

The left column of CCD captures in Fig. 6 shows the diffracted pattern when no analyzer 
is included. In all cases, the 3 × 3 vortex beam array is successfully obtained. However, the 
polarization of each order changes, and this is noticeable when the PSA is included and 
configured to detect different states. When the grating is illuminated with linearly polarized 
light (results in the first four rows in Fig. 6), we can identify two sets of diffraction orders 
with different polarization, as expected from the discussion in Section 3. According to Eq. 
(18), the zero order and the diagonal orders experience a polarization transformation with 
respect to the input polarization equivalent to that caused by a half-wave retarder oriented 
along the x-y axes. On the contrary, those orders diffracted in the x and y directions ((1,0), 
(0,1), (−1,0) and (0,-1)) transform the input polarization states as if they traversed a 
polarization rotator of 90° followed by an aligned half-wave retarder. 

These polarization changes can be clearly noticed in the first row of results. Since the 
input light is vertical linearly polarized, the first set of five orders exit the grating with the 
same vertical polarization, while the other four orders exit with horizontal linear polarization. 
This is shown by the extinction of the two set of orders when the PSA is configured vertical 
and horizontal respectively. On the contrary, when the PSA is linear at ± 45° or circular all 
nine orders are visible. The other cases when the grating is illuminated with a linear state 
confirm these results. Note that these polarization changes arise from the relative π/2 phase 
shift between the zero order and the ± 1 orders in Gori’s triplicator design. Note that the 
different polarization behavior in these two sets of diffraction orders was also observed in a 
recently reported 2D grating design [24]. Although the design in that work is different to ours, 

                                                                                        Vol. 27, No. 10 | 13 May 2019 | OPTICS EXPRESS 14481 



it also includes the product of two triplicators in the x-y directions, and therefore the relative 
π/2 phase shift is expected to play also a role. 

The situation is different when circularly polarized light illuminates the grating, as shown 
in the two bottom rows in Fig. 6. Here the grating acts as a pure geometric phase grating, 
imparting the encoded spatial phase, but the change in polarization in both cases is uniform to 
all orders and consists in a change of helicity of the circular polarization (input right circular 
polarization is transformed into left, and viceversa). This is shown by the fact that all 
diffraction orders are visible when the PSA is set to detect linear states. When it is configured 
to detect the circular states, the state equal to the input one is completely cancelled, while the 
opposite is fully transmitted. 

As a final result, we examine the use of the GP vortex grating as a vortex beam detector. 
For that purpose, we include a q-plate behind the PSG. When the PSG is set to generate a 
circular polarization state, the q-plate output is a vortex beam with topological charge ± 2q 
and the opposite circular polarization. Figure 7 shows the results captured at the Fourier plane 
when we illuminate the vortex grating with the output from a q-plate with q = 1/2 for two 
cases. 

In Fig. 7(a) the q-plate is illuminated with R circular polarization, so its output is a vortex 
beam with L circular polarization and topological charge 1in = + . This input charge is 

compensated on the diffraction order having charge 1= −  and therefore a bright spot on the 
(−1,0) order appears. In the second case in Fig. 7(b), the q-plate is illuminated with L circular 
polarization, and now the beam impinging on the grating is a vortex beam with R circular 
polarization and topological charge 1in = − . Now the bright spot appears on the ( + 1,0) 

diffraction order where the grating generates the vortex beam with charge 1= + . These 
results show that the grating could be used also as a vortex beam detector, although now the 
resolution limits are clearly visible in the distortion of the orders having higher topological 
charges. 

 

Fig. 7. Experimental results at the Fourier plane for the 2D vortex grating illuminated with two 
circularly polarized vortex beams of charges (a) + 1 (b) −1. No PSA is included. The yellow 
arrow indicates the position of the bright spot, revealing the input charge. 

5. Conclusions 

In summary, we have proposed, analyzed and demonstrated the application of the triplicator 
phase profile to a 2D vortex diffraction grating. We completed Gori’s et al analysis in [3] by 
showing the π/2 relative phase between the zero and the ± 1 diffraction orders, which is key to 
render different polarization at two sets of diffraction orders. We designed the 2D vortex 
triplicator grating and ordered its fabrication as a geometric-phase liquid-crystal grating by 
using a commercially available capability offered to fabricate customized retarders. The 
fabricated grating has been evaluated experimentally and confirms the theoretical predictions. 

This grating is an interesting diffractive element since, when being illuminated with a 
plane wave, it creates a bidimensional array of 3 × 3 vortex beams of integer topological 
charges ranging from + 4 to −4, and with the optimal diffraction efficiency. The same grating 
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could be used also as a detector of vortex beams, where the charge is detected by seeking the 
diffraction order where the singularity is cancelled [26]. The advantage of the triplicator 
design relies on its optimal diffraction efficiency, which might be of great importance in 
applications with low light intensity levels. 

Finally, we have shown an experimental proof-of concept using a commercial capability 
to fabricate customized non-standard geometric-phase diffraction gratings. Despite the limited 
spatial resolution, this opens interesting possibilities to researchers in the field who do not 
have facilities to fabricate such geometric-phase elements. 

Appendix 

In this Appendix we review the derivation of Gori’s triplicator and derive the condition in Eq. 
(5), which we have shown to be the cause of the different polarization behavior at different 
diffraction orders. The coefficients for the Fourier expansion of the optimum triplicator are 
calculated for the 0,+1 and −1 terms. 

The zero order in the Fourier expansion of the optimal triplicator in Eq. (1) takes the form: 
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If the change of variable δ = 2πx/p is applied, Eq. (19) is reduced to 
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which is expanded in two integrals by applying Euler’s formula 
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These two integrals can be calculated using the trigonometric relations 
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so Eq. (21) can be rewritten as 
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Since both integrals are even functions they can be written as 
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But note that the second integral in Eq. (25) is antisymmetric around the value δ = π/2, and 
therefore it vanishes. Consequently, τ0 is a pure real and positive value given by 
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where K is the complete elliptic integral of the first kind. For the numerical constant a = 
2.65718 derived in the triplicator design [3], the zero order coefficient τ0 is 0.555. 

Next, let us calculate the coefficients for the +1 and −1 orders. In this case 
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If the change of variable δ = 2πx/p is again applied, Eq. (2) reduces to 
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Applying Euler formula to each exponential function in Eq. (28), four different terms are 
obtained 
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and considering Eqs. (22) and (23), the following decomposition is obtained 
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Now, the same kind of symmetry considerations can be applied to these four terms. The 
second and third terms are odd functions about zero, so their definite integrals are zero. And 
the first and fourth terms in the sum are both even functions about zero, so its definite integral 
can be expressed as twice the integral from 0 to π., i.e. 
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Then, by noticing that the first term is an odd function about π/2, this first integral turns to be 
also zero, and the only remaining term is the fourth term, which is given by 
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where E denotes the complete elliptic integral of the second kind. Note that both orders get 
the same pure positive imaginary value. For a = 2.65718, this value is τ ± 1 = 0.555i. 
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