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Abstract 
This work presents a method for the efficient experimental generation of arbitrary polarized 
vector beam modes. The optical system employs two liquid-crystal on silicon (LCOS) spatial light 
modulators (SLM) in a common path architecture, avoiding the use of beam-splitters. Each SLM 
displays a different phase-only mask, each one encoding a different pattern onto two orthogonal 
linear polarization components of the input beam. These phase-only masks are designed using 
a recently proposed random technique to encode complex amplitude values. This encoding 
technique reconstructs the complex function on-axis, thus avoiding incorporating carrier phases. 
By addressing such properly designed phase-only holograms we demonstrate arbitrary scalar 
modes on each polarization component, whose superposition results in a vector beam mode. 
Different superpositions of Laguerre-Gaussian and Hermite-Gaussian modes are obtained and 
the generated vector beam modes are analyzed. Moreover, the addition of a phase-bias proves 
itself useful to perform a phase-shifting technique in order to evaluate the correct phase of the 
generated vector beam.  
 
 
1. INTRODUCTION 

Vector beams (VBs), as light beams with defined spatially-variant intensity, phase and 
polarization features, are important for many applications including tight focusing [1], optical 
tweezing [2], materials processing [3], or super-resolution microscopy [4]. Cylindrically polarized 
optical beams with the radial or azimuthal polarization as paradigmatic cases, have attracted 
the most attention from researchers because of their special properties [5]. 

 
VBs can also be defined as pure laser modes with an additional spatial polarization 

modulation [6]. There have been several methods to generate such beams, based on the fact 
that they can be generated as the superposition of scalar modes having orthogonal polarization 
[7]. Initial techniques included the manipulation of a laser resonator in order to directly emit a 
desired vector beam [8], or the use of interferometric arrangements [9]. More recently, they 
have been generated with spatially variant uniaxial flat elements, which can be fabricated with 
subwavelength gratings [10], or with liquid-crystal materials [11]. These elements, often 
referred to as q-plates, are in general designed to generate low-order VBs [12,13]. However, 
higher-order Laguerre-Gaussian q-plates have also been developed [14]. 

 
An alternative method to generate vector beams is based on spatial light modulators (SLM). 

While these methods require bulky optical systems, their programmability offer a great 
flexibility, and several different optical arrangements have been proposed. The commonly used 
parallel-aligned liquid-crystal SLM can modulate only one polarization component, parallel to 
the liquid-crystal director. Therefore, in order to control two polarization components, they 
usually require either dividing the device screen in two halves [15,16], using two SLMs [17], or 
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passing the beam twice through the SLM after a proper polarization transformation [18]. In 
other schemes, the parallel generation (or detection) of VBs is accomplished by adding linear 
phase carriers [19,20]. Achromatic VBs have been obtained by using reflective digital micro-
mirror SLMs, which are free from chromatic aberration, but require additional elements for 
polarization control [21]. In all these cases, the SLM operates externally to the laser cavity. 
However, laser modes have also been generated by inserting a reflective phase-only SLM in the 
laser cavity [22], thus achieving the controllable generation of Hermite-Gauss (𝐻𝐺 ) and 
Laguerre-Gauss (𝐿𝐺) scalar beams. A similar scheme was extended to generate VBs [23]. 
 

In all cases, the use of SLMs introduces an important efficiency loss. This loss primarily arises 
from the pixelated structure of the devices, which generates additional diffraction orders. 
Furthermore, the optical arrangements usually employ beam-splitters that reduce the power 
budget. For this reason, recent works report on highly efficient optical arrangements to generate 
vector beams [24,25]. In addition, the generation of higher-order beams requires some kind of 
amplitude modulation encoding. There have been many different proposals to achieve such 
amplitude encoding [26,27], which have been successfully applied to the encoding of different 
scalar beams [28-30]. In many cases, the amplitude encoding technique involves the use of a 
linear phase carrier and a consequent Fourier-filtering, which is mostly carried out off-axis, thus 
additionally contributing to a relevant reduction of the light budget and additional difficulties of 
stability and optical implementation. This operation, though, is sometimes mandatory when 
using SLMs that generate a strong DC component (usually due to flickering effects in the device) 
which prevents operating the system on axis [31]. 
 

In this work we combine recent advances to achieve an efficient way of generating VBs using 
SLMs. First, we use an optical setup based on two LCoS (liquid-crystal on silicon) SLMs arranged 
in a Z configuration. This type of configuration, already used in [32], is very robust, stable, and 
efficient since it has a common path for both polarization components and no beam splitters 
are required. We previously used this architecture for implementing a polarization diffraction 
grating based polarimeter [33] and customized structured polarized dual polarization split lenses 
[34]. In the new system here presented, though, we use two Hamamatsu LCoS-SLMs, devices 
that are free of flicker thus allowing operating the system on-axis, as opposed to the previous 
systems that were operated off-axis due to the zero-order (DC) component caused by this flicker 
effect. In addition, we use a recently developed method to encode complex valued computer-
generated holograms (CGH) onto phase-only displays [35]. This method is based on a random 
spatial multiplexing of two phase-only diffractive patterns (the phase information of the desired 
signal pattern and a diverging optical element that controls the amplitude) and creates the 
desired hologram reconstruction on axis. Therefore, it is very efficient in terms of light budget 
since it does not require adding a carrier phase function and does not reduce the available space 
bandwidth product. This encoding technique was successfully applied to demonstrate a 
simultaneous aberration and aperture control in a visual simulator system [36], and here we 
experimentally apply it to generate VBs. By addressing different combinations of scalar modes 
belonging to the Orbital Angular Momentum (OAM) Poincaré sphere [37,38] encoded onto 
orthogonal polarization states, we build different VBs [39]. Finally, we demonstrate that our two 
SLM-based optical system enables to easily apply a phase-shifting technique that proves itself 
very useful to obtain the exact phase distribution of the superpositions of different generated 
modes. 
 

The paper is organized as follows: after this introduction, Section 2 describes the optical 
system for the independent control of polarization components. Then, in Section 3 we explain 
the design of phase-only holograms for displaying complex-valued functions. Experimental 
results are shown in Section 4. In Section 5 we use phase-shifting techniques to estimate the 
phase of the optical beams finally obtained. Conclusions are given in section 6. 
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2. OPTICAL SYSTEM FOR THE INDEPENDENT CONTROL OF POLARIZATION COMPONENTS 

Figure 1 shows the scheme of the optical setup. We use an input He-Ne laser (l=633 nm) 
that is spatially filtered and collimated. Two LCoS-SLMs are arranged in a Z configuration. The 
angle between the incident ray and the reflected ray on each modulator is about 11°. LCoS1 and 
LCoS2 devices are on conjugated planes by means of a 4f-system obtained by two lenses of the 
same focal length, thus obtaining a minus one magnification. Both devices are parallel-aligned 
LCoS displays from Hamamatsu (model X10468-01). We measured a reflectivity of more than 
𝑅 = 78% for both devices. And they have 800×600 pixels, with 20 μm pixel pitch, an effective 
area of 15.8×12 mm2 and 98% fill factor, thus providing more than 96% efficiency to the main 
reflected beam (zero order). Therefore, the total device efficiency at the zero order is about 
𝜂~75%. As mentioned earlier, an important characteristic of these devices is that they are free 
of flicker. Therefore, the reflected beam does not present zero order (DC) component and the 
displayed holograms can be designed to generate reconstruction on-axis, and therefore make 
full use of this 75% zero-order efficiency. 

 
Fig. 1. Scheme of the optical setup. LCoS1 and LCoS2 are two liquid-crystal on silicon SLMs, with the liquid-crystal 

director oriented horizontally. A 4f-system (lenses L2 and L3) images LCoS1 onto LCoS2. POL: input linear polarizer. 
ANA: output polarization analyzer. HWP: half-wave plate. CCD: charge couple device detector. 

 
The input polarizer (POL) is oriented at 45° to ensure equal magnitude on both horizontal 

and vertical polarization components. Parallel-aligned LCoS displays only modulate the linear 
polarization component parallel to the LC director. In our devices, this corresponds to the 
laboratory horizontal direction. Therefore, a phase pattern addressed to LCoS1 modulates the 
horizontal component of the input beam, while the vertical polarization component is 
unaffected. A half-wave plate (HWP) oriented at 45° is added after LCoS1 in order to transform 
the horizontal linear polarization component into the vertical component of the input beam 
(and viceversa). In this way, LCoS2-SLM modulates the polarization component that was not 
modulated by LCoS1-SLM, while leaving unaffected the polarization component that was 
already modulated by the first SLM. Thus, the output beam has two orthogonal horizontal and 
vertical polarization components that are independently modulated through the phase-only 
mask implemented by the two LCoS-SLMs. 

 
The output beam emerging from the system is phase-only modulated in its vertical and 

horizontal components, and therefore the output Jones vector can be written as: 
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 𝐽(𝑥, 𝑦) = 3
𝐽4(𝑥, 𝑦)
𝐽5(𝑥, 𝑦)

6 = 3𝑒
𝑖91(4,5)

𝑒𝑖92(4,5)
6, (1) 

 
where 𝐽4(𝑥, 𝑦) and 𝐽5(𝑥, 𝑦) denote the spatial pattern encoded onto the vertical and horizontal 
linear polarization components respectively, and 𝑒𝑖9𝑘(4,5) , 𝑘 = 1,2, denotes the phase-only 
masks displayed onto LCoS1 and LCoS2 SLMs respectively. A lens focuses the beam, which is 
captured by a CCD camera. This final lens could be a physical converging lens or, as we use in 
this work, can be encoded onto the phase-only holograms 𝜓>(𝑥, 𝑦) displayed on the LCoS SLMs. 
Finally, a polarizer analyzer (ANA) verifies the polarization output. 
 
3. TECHNIQUE FOR ENCODING A COMPLEX FUNCTION ONTO A PHASE-ONLY SLM 
Since LCoS devices work in phase-only modulation regime, a method to encode complex values 
onto phase-only displays is required. Here we used the codification method described in [35], 
which is based on a random spatial multiplexing of two phase-only functions: the phase 
information of the desired pattern and a diverging optical diffractive element to redirect 
undesired light out of the optical axis. This codification method presents interesting features: 1) 
it does not require any iterative algorithms, thus it is not computationally costly; 2) the desired 
complex optical field is reconstructed on-axis; and 3) no phase carriers are required. Next, we 
briefly review this method. 
 

Let 𝐹(𝑥, 𝑦) = 𝑀(𝑥, 𝑦)𝑒𝑖𝜑(4,5) be the complex function to be encoded, where 𝑀(𝑥, 𝑦) and 
𝜑(𝑥, 𝑦) represent its magnitude and phase. A new multiplexed phase-only function 𝑒𝑖9(4,5) is 
designed as: 
 
 𝑒𝑖9(4,5) = 𝑅(𝑥, 𝑦)𝑒𝑖𝜑(4,5) + 𝑅C(𝑥, 𝑦)𝑒𝑖D(4,5), (2) 
 
where	𝑅(𝑥, 𝑦) is a binary-amplitude (0-1) pattern, 𝑅C(𝑥, 𝑦) = 1 − 𝑅(𝑥, 𝑦) is its complementary 
pattern, and 𝑒𝑖D(4,5)is the phase function of a diverging element, in our case a high-frequency 

negative diffractive axicon, 𝜉(𝑥, 𝑦) = −2𝜋𝑟/𝑝, 𝑟 = L𝑥M + 𝑦M denoting the radial coordinate, 
and 𝑝 denoting the axicon’s period. The role of 𝑅(𝑥, 𝑦) is to select, at each pixel, between the 
phase function 𝜑(𝑥, 𝑦)	and the diverging axicon phase function 𝜉(𝑟). 
 

The negative diffractive axicon acts as a circular blazed diffraction grating that diverges the 
light away from the optical axis. This light can be very easily filtered by a circular aperture. This 
way, the magnitude information 𝑀(𝑥, 𝑦)  is encoded onto the new multiplexed phase-only 
function 𝜓(𝑥, 𝑦) via the function 𝑅(𝑥, 𝑦) which is defined as  
 

 𝑅(𝑥, 𝑦) = N1	if	𝑀
(𝑥, 𝑦) > 𝑟𝑛𝑑(𝑥, 𝑦),

0	if	𝑀(𝑥, 𝑦) ≤ 𝑟𝑛𝑑(𝑥, 𝑦), (3) 

 
where 𝑟𝑛𝑑(𝑥, 𝑦) is a distribution of random numbers in the interval [0,1]. 
 

This phase-only encoding technique of the complex function 𝑀(𝑥, 𝑦)𝑒𝑖𝜑(4,5) can be easily 
understood as follows. If the required amplitude 𝑀(𝑥, 𝑦) is close to 1, it is better represented 
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by the phase-only function 𝑒𝑖𝜑(4,5)  and 𝑅(𝑥, 𝑦) = 1 is the good choice. On the contrary, for 
pixels where 𝑀(𝑥, 𝑦) is close to 0, light should be removed. The diverging axicon performs this 
operation directing light out of the optical axis. Therefore, 𝑅(𝑥, 𝑦) = 0 is the right choice for 
these pixels. For intermediate values of 𝑀(𝑥, 𝑦), Eqs. (2)-(3) provide an adequate random choice 
between the two phase-only functions.  

 
Note that the light directed out of the optical axis by the encoded axicon involves the arising 

of a ring of light at the Fourier transform planes, while the hologram reconstruction appears on 
axis [35]. Therefore, this ring of light must be filtered in order to achieve good results. Since the 
diffractive axicon has a high spatial frequency, the filtering can be easily done by means of a 
circular aperture located in the Fourier transform planes. For the mask displayed in LCoS1-SLM, 
a circular aperture can be placed at the back focal plane of the lens after the SLM. In our case, 
the HWP circular mount acted as the circular aperture, thus blocking the ring generated by the 
first axicon. For the second mask displayed on the LCoS2-SLM, the ring of light appears in the 
plane where the CCD camera detector is placed, but outside the detector area which is centered 
on the final reconstruction. Therefore, it has no impact on the final image. 

 
The accuracy of this encoding technique for the implementation of digital complex 

holograms was analyzed in detail in Ref. [35]. The signal-to-noise ratio and efficiency of the 
hologram reconstruction depends on the required amplitude modulation, as well as on the 
characteristics of the random function applied in the algorithm. The authors were able to 
achieve a hologram efficiency around 35%. In that work, the technique was applied to the 
generation of higher-order scalar Laguerre-Gauss (LG) and Hermite-Gauss (HG) laser modes. 
Here, we apply it for the generation of VBs in the optical system described in Section 2.  

 
4. VECTOR BEAMS, ORBITAL ANGULAR MOMENTUM AND HIGHER-ORDER POINCARÉ SPHERES 
Although VBs are natural solutions to the vectorial Helmholtz equation they are very often 
generated as coaxial superpositions of orthogonal scalar fields with orthogonal polarizations [7]. 
The system in Fig. 1 directly allows the superposition of different 𝐻𝐺 or 𝐿𝐺 modes encoded on 
the vertical and horizontal polarization states. The use of SLMs also enables us to add an extra 
constant relative phase (𝛽) between the vertical and horizontal polarization components. This 
is equivalent to adding a linear retarder with retardance 𝛽  and neutral axes oriented along 
vertical/horizontal directions. It is well-known that this is also very useful to provide different 
realizations of VBs. The output Jones vector in Eq. (1) can be approximated by  
 

 𝐽(𝑥, 𝑦) = 3
𝐽4(𝑥, 𝑦)
𝐽5(𝑥, 𝑦)

6 ≃ X
𝑀Y(𝑥, 𝑦)𝑒𝑖𝜑1(4,5)

𝑀M(𝑥, 𝑦)𝑒𝑖𝜑2(4,5)𝑒𝑖𝛽
Z. (4) 

 
where the complex functions 𝑀>(𝑥, 𝑦)𝑒𝑖𝜑𝑘(4,5) , 𝑘 = 1,2 , denote the magnitude and phase 
encoded on each polarization component. As mentioned earlier, in order to generate VBs we 
will encode the complex functions that correspond to 𝐻𝐺  or 𝐿𝐺  modes. We designed the 
functions 𝜑>(𝑥, 𝑦) to include the quadratic phase corresponding to a lens that replaces the final 
physical lens (L4) in the system in Fig. 1. 
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At this point, it is interesting to remind the relations between different generalized Poincaré 
spheres represented in Fig. 2. Figure 2(a) shows the standard Poincaré sphere, where each 
polarization state corresponds to a point on the sphere. The equator defines the linear states, 
while the circular right- and left-handed states: 

 

 𝐞\𝐑 =
Y
√M
_ 1+𝑖`, 𝐞\𝐋 =

Y
√M
_ 1−𝑖`, (5) 

 
lie on the north and south pole respectively. In general, an elliptic state given by  
 

 𝐞\𝛂,𝛆 = sin _𝜀 + g
h
` 𝑒ijk𝐞\𝐑 + cos _𝜀 +

g
h
` 𝑒jk𝐞\𝐋 (6) 

 
describes a polarization ellipse with azimuth 𝛼 and ellipticity 𝜀, which lies on the point with 
longitude and latitude angles (2𝛼, 2𝜀) of the Poincaré sphere. 
 

In this work we encode 𝐻𝐺 and 𝐿𝐺 modes on the 𝐽4(𝑥, 𝑦) and 𝐽5(𝑥, 𝑦) patterns. 𝐻𝐺 modes 
are exact solutions of the scalar paraxial wave equations in Cartesian coordinates. We consider 
an output beam at the waist plane 𝑧 = 0, the complex amplitude can thus be written as: 
 

 𝐻𝐺pq(𝑥, 𝑦, 𝜔s) =
Y
tu
vMw(xyzw{)

gp!q!
𝐻p _

√M
tu
𝑥` 𝐻q _

√M
tu
𝑦`𝑒−_(𝑥

2+𝑦2) 𝜔0
2} `, (7) 

 
where 𝐻p	 is the m-th order Hermite polynomial, 𝜔s is the beam waist, and 𝑥 and 𝑦 are the 
Cartesian coordinates. On the other hand, 𝐿𝐺 modes are expressed at the waist as 
 

 𝐿𝐺~ℓ(𝑟, 𝜃, 𝜔s) =
Y
tu
v ~!M|ℓ|y{

g(|ℓ|�~)!
_ �
tu
`
|ℓ|
𝐿~
|ℓ| _ M

tu�
𝑟M` 𝑒−(𝑟 tu⁄ )2𝑒𝑖ℓ𝜃 = 𝐴~ℓ(𝑟)𝑒𝑖ℓ𝜃, (8) 

 

where 𝐿~
|ℓ|  are the 𝑝ℓ-th order Laguerre polynomials, and 𝑟 and 𝜃 are polar coordinates. The 

term 𝐴~ℓ(𝑟) in this equation accounts for the radial part of the function and does not depend 
on the sign of ℓ, only on its magnitude. The mode order is 𝑁 = 𝑚+ 𝑛 for an 𝐻𝐺 mode and 𝑁 =
2𝑝 + |ℓ| for a 𝐿𝐺 mode, respectively [37].  
 

For simplicity, we will restrict to the first-order modes (𝑁 = 1), for which the following 
relations exist [37]: 

 

 𝐻𝐺�/� =
Y
√M
(𝐻𝐺sY ± 𝐻𝐺Ys), (9a) 

 

 𝐿𝐺s
±Y = Y

√M
(𝐻𝐺Ys ± 𝑖𝐻𝐺sY), (9b) 

 
where 𝐻𝐺�/� denote the diagonal/antidiagonal 𝐻𝐺 modes. Alternatively, the 𝐻𝐺 beams can be 
composed of 𝐿𝐺 modes as  
 

 𝐻𝐺Ys =
Y
√M
(𝐿𝐺sY + 𝐿𝐺siY), (10a) 



7 
	

 

 𝐻𝐺sY =
ij
√M
(𝐿𝐺sY − 𝐿𝐺siY), (10b) 

 

 𝐻𝐺� =
�w�� �⁄

√M
(𝐿𝐺sY + 𝑖𝐿𝐺siY), (10c) 

 

 𝐻𝐺� =
�w��� �⁄

√M
(𝐿𝐺sY − 𝑖𝐿𝐺siY). (10d) 

 
These relations, equivalent to those found when superposing polarization states, can be used 

to define the orbital angular momentum (OAM) Poincaré sphere [38]. This Poincaré sphere 
represents the superpositions of scalar first order 𝐻𝐺  and 𝐿𝐺  modes (Fig. 2b), where the 
equator contains the 𝐻𝐺Ys mode and their in-plane rotated versions, and the poles correspond 
to the 𝐿𝐺sY and 𝐿𝐺siYmodes. Every point in the OAM Poincaré sphere, with longitude 2𝛼 and 
latitude 2𝜀, is obtained as the superposition of the 𝐿𝐺sY and 𝐿𝐺siY modes as  
 

 𝑓(𝑥, 𝑦) = sin_𝜀 + g
h
`𝑒ijk𝐿𝐺sY + cos _𝜀 +

g
h
` 𝑒jk𝐿𝐺siY. (11) 

 
Note that this expression is analogous o an elliptic state in Eq. (6). 
 

Finally, Fig. 2(c) shows the higher-order Poincaré sphere of order one [39], which represents 
the first-order cylindrically polarized VBs. There is a one-to-one mapping between every point 
on the standard Poincaré sphere and the states in the first-order Poincaré sphere [40]. Each 
homogeneous polarization state generates one first-order vector beam when it traverses a q-
plate device [12,41]. 

 
We note that different realizations of the higher-order Poincaré sphere can be obtained, 

depending on the orthogonal polarization states that are selected to encode the scalar modes. 
The Poincaré sphere in Fig. 2(c) [39] corresponds to the VBs generated when 𝐿𝐺 modes are 
encoded onto the circular polarization components, i.e., vector beams generated as: 
 

 𝑉�⃑ (𝑥, 𝑦) = sin _𝜀 + g
h
` 𝑒ijk𝐿𝐺siY𝐞\𝐑 + cos _𝜀 +

g
h
` 𝑒jk𝐿𝐺sY𝐞\𝐋. (12) 

 
The transversal section of these vector beams consists in elliptical states with constant ellipticity, 
but azimuth that rotates following the polar coordinate. Similarly, the superposition of 𝐿𝐺 
modes encoded onto the vertical and horizontal linear polarizations results in the generation of 
VBs where the transversal section shows polarization states with constant orientation, but 
where the ellipticity changes following the polar coordinate [42]. 
 

We make use of the above relations to generate different VBs by means of the experimental 
system described in Section 2 (Fig. 1).  
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Fig. 2. (a) Standard Poincaré sphere for a homogeneous polarized state. (b) Orbital angular momentum (OAM) 

generalized Poincaré sphere. (c) Higher-order Poincaré sphere for first-order vector beams.  
 
 
5. EXPERIMENTAL RESULTS 
5.1 Superposition of orthogonally polarized 𝑯𝑮 modes 
Let us start with the classical experiment that combines the 𝐻𝐺Ys and 𝐻𝐺sY modes to generate 
a first-order vector beam [5]. The results are displayed in Fig. 3. In this case, we encode the mode 
𝐻𝐺Ys  on the vertical polarization, while the mode 𝐻𝐺sY  is encoded on the horizontal 
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polarization (note that the vertical direction is selected as the x axis). The output Jones vector is 
therefore given by 
 

 𝐽Y(𝑥, 𝑦) =
Y
√M
3𝐻𝐺Ys

(𝑥, 𝑦)
𝐻𝐺sY(𝑥, 𝑦)

6. (13) 

 
Figures 3(a) and 3(b) show a detail of the center of the phase-only hologram, codified using the 
technique presented in [35]. These masks show in the center the characteristic phase step of 
the 𝐻𝐺  beams (with a horizontal border for Fig 3(a), and a vertical border for Fig.3(b)) but 
accompanied by the high-frequency circular grating characteristic of the diffractive axicon.  

Figure 3(c) shows the expected intensity and polarization pattern obtained from the Jones 
vector in Eq. (13), which corresponds to the radial polarization [5]. The inset shows the 
experimental CCD capture without analyzer, that exhibits the characteristic doughnut shape. 
The local state of polarization becomes evident when a linear analyzer is placed in front of the 
CCD camera. In Figs. 3(d) and 3(e) the analyzer is oriented vertical and horizontal, and only one 
polarization component is selected. The scalar modes 𝐻𝐺Ys and 𝐻𝐺sY are then clearly visible. 
When the analyzer is oriented at ±45° the superposition of the two modes is built. The following 
simple Jones matrix calculus shows that the resulting field is  

 

 𝐽Y� =
Y
M
_ 1 ±1
±1 1 ` 𝐽Y(𝑥, 𝑦) =

Y
M
(𝐻𝐺Ys ± 𝐻𝐺sY)

Y
√M
_ 1±1` ∝ 𝐻𝐺�/�𝐞\±𝟒𝟓,𝟎, (14) 

 
where Eq. (9a) was applied and 𝐞\±𝟒𝟓,𝟎 indicates the linear polarization states at ±45°. These 
superpositions, shown in Figs. 3(f) and 3(g), result in the diagonal and antidiagonal 𝐻𝐺 modes 
with polarized linear states oriented at ±45° respectively. Note how the projection of the 
polarization states in Fig. 3(c) agree with the intensity patterns in all cases. Note also that the 
rotation of the analyzer projects the generated vector beam onto a scalar mode that lies on the 
equator of the OAM Poincaré sphere. 
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Fig. 3. (a)-(b) Central part of the phase-only holograms displayed on LCoS1 and LCoS2 to generate 𝐻𝐺Ys 
and 𝐻𝐺sY modes. (c) Expected polarization pattern (the inset shows the CCD capture without analyzer). 
Experimental result with a linear analyzer oriented (d) vertical (𝐻𝐺Ys), (e) horizontal (𝐻𝐺sY), (f) at 45° 

(𝐻𝐺�) and (g) at -45° (𝐻𝐺�). The analyzer’s orientation is indicated on the top of each picture. 
 
 
5.2 Phase bias control – Generation of 𝑳𝑮 modes from superposition of 𝑯𝑮 modes 
Equation (9b) indicates that the 𝐿𝐺 modes can be obtained from the superposition of 𝐻𝐺Ys and 
𝐻𝐺sY modes with a relative ±𝜋/2 phase shift. The phase 𝛽 in Eq. (4) can be changed simply by 
adding a constant gray level in one of the two phase holograms displayed on the LCoS-SLMs, in 
this case LCoS2. Therefore, we build a VB whose output Jones vector is in the form: 
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 𝐽M(𝑥, 𝑦) =
Y
√M
3𝐻𝐺Ys

(𝑥, 𝑦)
𝑖𝐻𝐺sY(𝑥, 𝑦)

6. (15) 

 
Again, Figs. 4(a) and 4(b) show the holograms displayed on LCoS1 and LCoS2 SLMs. The 
polarization pattern in Fig. 4(c) looks different, since now it is the ellipticity (and not the 
orientation, as was the case in Fig. 3(c)) the polarization parameter that changes along the polar 
coordinate. Along the diagonal directions, the polarization becomes circular. This polarization 
map does not belong directly to the Poincaré sphere in Fig. 2(c), but it is simply the transmission 
of the radial polarization through a quarter-wave plate (QWP) with axes oriented along the 𝑥 −
𝑦 coordinates [43]. Projecting the Jones vector in Eq. (15) onto a linear polarizer oriented at ±45° 
yields 
 

 𝐽M� =
Y
M
_ 1 ±1
±1 1 ` 𝐽M(𝑥, 𝑦) =

Y
M
(𝐻𝐺Ys ± 𝑖𝐻𝐺sY)

Y
√M
_ 1±1` ∝ 𝐿𝐺s

±Y𝐞\±𝟒𝟓,𝟎, (16) 

 
where we used Eq. (9b). The 𝐿𝐺 beams are obtained at linear states with orientation at ±45°.  
 

The corresponding experimental results are shown in Fig. 4. In the absence of analyzer (inset 
in Fig 4(c)), the intensity adopts the same pattern as in Fig 3(c). However, when we place the 
analyzer, the spatial polarization patterns are revealed. Again, when the analyzer is oriented 
either vertical or horizontal, the scalar 𝐻𝐺  modes appear. However, when the analyzer is 
oriented at ±45°, the projection given by Eq. (16) results in the scalar modes 𝐿𝐺s

±Y . The 
polarization pattern in Fig. 4(c) is interesting since it allows transforming a vector beam onto 
scalar modes 𝐻𝐺Ys, 𝐻𝐺sY and 𝐿𝐺s

±Y by simply rotating the analyzer. Polarization ellipses drawn 
in blue are right states, while those in red denote left states. Linear states are drawn in green. 
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Fig. 4. (a)-(b) Central part of the phase-only holograms displayed on LCoS1 and LCoS2 to generate 𝐻𝐺Ys 
and 𝐻𝐺sY modes. (c) Expected polarization pattern (the inset shows the CCD capture without analyzer). 
Ellipses with left- and right-handed polarization are drawn in red and blue respectively.  Experimental 

result with a linear analyzer oriented (d) vertical (𝐻𝐺Ys), (f) horizontal (𝐻𝐺sY), (g) at 45° (𝐿𝐺sY) and (h) at 
-45° (𝐿𝐺siY). The analyzer’s orientation is indicated on the top of each picture.  

 
 
5.3 Stokes polarimetry of generated modes 
The experimental images shown in Fig. 3 and Fig. 4 show the correct generation of the expected 
polarized beams. However, in the most general case the map of polarization states must be 
experimentally verified. This is typically done using an imaging polarimeter that provides images 
of the Stokes parameters. In order to complete the Stokes parameters measurement, two 
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additional images would be required in each case, using a quarter-wave plate (QWP) and a fixed 
polarizer to create a circular analyzer in front of the CCD camera.  
 

However, alternatively, the QWP can be encoded with the aid of the SLMs, by adding a 
constant ±𝜋/2 phase shift to one of the two holograms. Note that, because we are considering 
paraxial beams, this is equivalent to the phase bias just mentioned in section 5.2. Adding a 
constant phase ±𝜋/2 to one of the SLMs is equivalent to adding a QWP before the analyzer. 
Therefore, the set of experimental images in Fig. 3 and Fig. 4 are enough to derive the Stokes 
parameters in both cases, without requiring a physical QWP. Figures 4(f) and 4(g) represent the 
right and left circular components of the vector beam in Fig. 3, while Figs. 3(f) and 3(g) represent 
the left and right circular components of the vector beam in Fig. 4. 

 
Using this technique, we obtained the experimental Stokes parameters images shown in Fig. 

5. These images were obtained using standard polarimetric definitions [44]. The case shown in 
Fig. 5(a), corresponding to the results in Fig. 3, is a radial linear polarized beam. Therefore the 
ellipticity must be zero, which implies that S3 is almost zero, whereas S1 and S2 varies azimuthally 
from  ̶ 1 to +1. The case in Fig. 5(b) corresponds to the results in Fig. 4. In this case is the S2 
parameter which remains null over the entire beam, while the S1 and S3 parameters show an 
azimuthal variation. The experimental results agree well with the expected polarization maps. 
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Fig. 5. Images of the experimental Stokes parameters for the vector beams in (a) Figure 3 and (b) Figure 

4. S1, S2 and S3 are normalized Stokes parameters. 
 
 
5.4 Superposition of 𝑳𝑮 modes to generate 𝑯𝑮 modes 
In this example, we reverse the previous situation and encode 𝐿𝐺s

±Y  modes on the 
vertical/horizontal polarization components. The results are shown in Fig. 6. Note how the phase 
holograms in Figs. 6(a) and 6(b) now adopt the shape of a spiral lens, characteristic of combining 
the spiral phase of 𝐿𝐺 beams and the quadratic phase of the lens. Notice the opposite sense of 
rotation, corresponding to the opposite sign of the spiral phase.  
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The output Jones vector can thus be described as: 

 

 𝐽�(𝑟, 𝜃) =
Y
√M
X
𝐿𝐺sY(𝑟, 𝜃)
𝐿𝐺siY(𝑟, 𝜃)

Z = �u{(�)
√M

3 𝑒
j�

𝑒ij�
6, (17) 

 
where 𝐴sY(𝑟) is the radial part of the 𝐿𝐺	function. This again corresponds to a vector beam, 
whose polarization pattern is drawn in Fig. 6(c). The state of polarization changes azimuthally 
due to the phase difference between the horizontal and vertical components. It is always an 
elliptical state aligned at ±45°, but the ellipticity is changing along the polar coordinate. This 
again is not a vector beam that belongs to the Poincaré sphere in Fig. 2(c), but it is simply the 
transmission of the slanted (spiral) polarization state onto a QWP oriented at 45° [43]. 

 
When projecting this state onto a linear analyzer oriented at ±45° the following superposition 

is obtained 
 

 𝐽�� =
Y
M
_ 1 ±1
±1 1 ` 𝐽�(𝑟, 𝜃) =

Y
√M
(𝐿𝐺sY ± 𝐿𝐺siY)𝑃�⃗±h  ∝ 𝐻𝐺Ys/sY𝐞\±𝟒𝟓,𝟎, (18) 

 
which corresponds to the 𝐻𝐺 modes, according to Eqs. (10). 
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Fig. 6. (a)-(b) Central part of the phase-only holograms displayed on LCoS1 and LCoS2 to generate 𝐿𝐺sY 

and 𝐿𝐺siY modes. (c) Expected polarization pattern (the inset shows the CCD capture without analyzer). 
Ellipses with left- and right-handed polarization are drawn in red and blue respectively. Experimental 

result with a linear analyzer oriented (d) vertical (𝐿𝐺sY), (e) horizontal (𝐿𝐺siY), (f) at 45° (𝐻𝐺Ys) and (g) at 
-45° (𝐻𝐺sY). The analyzer’s orientation is indicated on the top of each picture. 

 
 

Figure 6(d) shows the experimental CCD capture of the generated beam without analyzer, 
which exhibits the characteristic doughnut shape. However, note in Figs. 6(d) to 6(g) the 
different projections onto a linear analyzer. When the analyzer is oriented either vertical or 
horizontal, the 𝐿𝐺 mode encoded on the corresponding LCoS-SLM is generated. But now, when 
the analyzer is oriented at ±45° an HG mode is obtained. Namely, at +45°, we get the 
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superposition 𝐿𝐺sY + 𝐿𝐺siY , resulting in the 𝐻𝐺Ys  mode, while at -45°, the superposition is 
𝐿𝐺sY 	− 𝐿𝐺siY , resulting in the 𝐻𝐺sY mode. 
 
5.5 Generation of higher-order modes 
In this final subsection we generate higher-order vector beams by combining 𝐿𝐺 modes, 𝐿𝐺sℓ 
and 𝐿𝐺siℓ with orthogonal polarization states and higher ℓ values. We used again the linear 
polarization basis (𝑥, 𝑦) that comes from the system in Fig. 1. Therefore, the output vector beam 
can be written as the following Jones vector: 
 

 𝐽h(𝑟, 𝜃) =
Y
√M
X
𝐿𝐺sℓ(𝑟, 𝜃)
𝐿𝐺siℓ(𝑟, 𝜃)

Z = �uℓ(�)
√M

3 𝑒
jℓ�

𝑒ijℓ�
6, (19) 

 
where 𝐴sℓ(𝑟) represents the radial amplitude distribution. Figure 7 shows the experimental 
results obtained from the superposition of the two modes when the analyzer is oriented at ±45°. 
The results correspond to the encoding of 𝐿𝐺 modes with charges ℓ = ±2 (Figs 7(a) and 7(b)) 
and ℓ = ±3 (Figs 7(c) and 7(d)). They show the characteristic pattern of the so-called petal 
beams [45], with a total number of four and six lobes respectively. 
 

In Figs. 7(e)-7(h) a more complex superposition is shown. We generate phase-only holograms 
that encode the modes 𝐿𝐺Yi�  and 𝐿𝐺s¢  in the vertical and in the horizontal polarization 
components (Figs. 7(e) and 7(f)). When the analyzer selects one of these two polarizations, the 
intensity pattern in these two modes arises. However, when the analyzer is oriented at ±45° 
(Figs. 7(g) and 7(h)), the petal interference pattern is observed only in the external ring. 
 

 
Fig. 7. Experimental CCD captures of the following cases: (a) 𝐿𝐺sM + 𝐿𝐺siM, (b) 𝐿𝐺sM − 𝐿𝐺siM, (c) 𝐿𝐺s� +
𝐿𝐺si�, (d) 𝐿𝐺s� − 𝐿𝐺si�, (e) 𝐿𝐺Yi�, (f) 𝐿𝐺s¢, (g) 𝐿𝐺Yi� + 𝐿𝐺s¢, (h) 𝐿𝐺Yi� − 𝐿𝐺s¢. The orientation of the 

analyzer is indicated on the top of each picture. 
 

 
6. PHASE EVALUATION WITH PROGRAMMED PHASE-SHIFTING 

One of the great advantages of using SLMs to generate these modes is the ability to program 
arbitrary phase holograms. The previous results have demonstrated the accurate generation of 
the intensity pattern characteristic of different types of modes. However, in order to completely 
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verify that we are indeed generating the correct vector beam, the phase distribution of the 
superposition beams should be measured as well. This requires interferometric techniques. In 
this section we show that our SLM-based optical setup can be employed to perform this phase 
evaluation through phase-shifting interferometry (PSI) and without requiring any other 
additional elements. 
 

Phase-shifting interferometry (PSI) [46] uses multiple interferograms with different relative 
phase shift between the reference and the test beams. We use the four-step algorithm with 
phase shifts 0, 𝜋/2, 𝜋, and 3𝜋/2. A similar approach was used in [35] to evaluate the phase of 
scalar beams generated with a single SLM. Here we extend it to the case of the generated VBs. 
The interferograms are obtained simply by placing a final analyzer oriented at ±45° before the 
CCD detector. Then, the required relative phase shift is introduced in one of the modulators, 
with steps of 𝜋/2 phase shift. Four images are captured, 𝐼(𝑥, 𝑦; δ), one for each value of the 
phase shift δ, and the spatial phase distribution ∆(𝑥, 𝑦) is calculated as 
 

 ∆(𝑥, 𝑦) = arctan ª
«_4,5;��� `i«_4,5;

�
�`

«(4,5;s)i«(4,5;g)
¬. (20) 

 
Figures 8(a) and 8(b) show the generation of two 𝐿𝐺sℓ modes, having ℓ = ±5, respectively. 

Their superposition is presented in Fig. 8(c) when the analyzer is oriented at 45°, and results in 
a petal beam with ten lobes. The result of the phase-shift algorithm is shown in Fig. 8(d). We can 
observe that the experimental superposition 𝐿𝐺s  + 𝐿𝐺si   shows spiral phase pattern with 
2ℓ =10 jumps from 0 to 2𝜋, thus verifying the correct generation of the beam. 

 
A more complex situation is shown in the second row of Fig. 8. In this case, the vertical and 

horizontal polarization components encode modes 𝐿𝐺s and 𝐿𝐺siM respectively. The difference 
in the magnitude of ℓ is noticeable in the different diameter of the two rings. When the analyzer 
is oriented at 45° to generate their superposition, the intensity pattern shows a null point at the 
center, but additional nine dark points around it (Fig 8(g)). The measured phase associated to 
this intensity pattern is displayed in Fig. 8(h) and exhibits nine phase jumps from 0 to 	2𝜋 along 
the polar coordinate. 
 
 



19 
	

 
Fig. 8. Experimental CCD captures of: (a) 𝐿𝐺s , (b) 𝐿𝐺si , (c) 𝐿𝐺s  + 𝐿𝐺si . (d) Phase of (c) measured using 
PSI. Experimental CCD captures of: (e) 𝐿𝐺s, (f) 𝐿𝐺siM, (g) 𝐿𝐺s+𝐿𝐺siM. (h) Phase of (g) measured using PSI. 
 
7. CONCLUSIONS 

In summary, we have presented an optical setup using a Z-configuration which is based on 
two LCoS panels working in phase-only modulation useful to generate different vector modes 
that result from the superposition of 𝐻𝐺  and 𝐿𝐺  modes encoded on orthogonal linear 
polarizations. A remarkable advantage of this optical arrangement is its high light-efficiency, 
since no beam splitter is employed. In addition, since the SLMs used in this work do not show 
flicker, they can be operated in the zero diffraction order (there is no need of a phase carrier). 
Consequently, the complete space-bandwidth product of the device is employed and we can 
work on-axis. The optical system energy budget is reduced mainly by the reflectivity (𝑅~78%) 
and the zero-order diffraction efficiency (𝜂~96%) of the LCoS devices. Since two LCoS-SLMs are 
employed, the total system maximum conversion efficiency is about 56% (additional losses at 
the lenses and HWP in the system should also be accounted). 

 
We use the LCoS-SLMs to encode spatial patterns that modify the phase but also the 

magnitude of the vertical and horizontal polarization components. For that purpose, a recently 
developed technique to encode complex functions in phase-only functions is applied [35], which 
also reconstructs the desired field on axis. The encoding technique introduces additional losses 
that depend on the magnitude information that is encoded. Magnitude encoding is 
accomplished by diffracting light out of axis by means of a diverging axicon whose characteristic 
Fourier transform ring must be filtered. Nevertheless, the encoding technique generates on-axis 
hologram reconstruction, thus avoiding any additional phase carrier function. The experimental 
realization of different vector beams has been demonstrated. 

 
Finally, another interesting result of our proposal relies on the fact that with the same optical 

setup, the calculation of the phase distribution of the resulting vector beams can be easily 
retrieved. We use a four-step phase-shifting algorithm to evaluate the phase of the generated 
beams even for higher orders. As a result, we have developed an efficient facility to generate 
different types of vector beams, useful for developing complex light beams that could be 
exploited in any of the many applications of vector beams that are nowadays developed. 
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