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Abstract 
When encoding diffractive optical elements (DOE) onto a spatial light modulator (SLM), the 
diffraction efficiency can be reduced because of the pixel nature of the SLM. These effects have 
been studied previously with displays having the standard phase depth of 2p radians. In this 
work we explore such effects with devices having a phase-dynamic range as large as 10p. We 
analyze the quantization effects when displaying blazed phase diffraction gratings in such 
devices. Experimental results are included where the number of discrete steps per period of the 
grating as well as the phase modulation depth is varied. Experimental results agree with theory 
 
 
1. INTRODUCTION 
The great advances achieved by the liquid-crystal technology [1] results nowadays in modern 
spatial light modulators (SLM), with 2D pixelated arrays with about thousands of pixels and pixel 
dimensions about a few microns. This high resolution motivated the SLM use of optical 
processing, pioneered in [2], is now generalized and SLMs are used routinely to display dynamic 
diffractive optical elements (DOE) in all types of applications [3].  
 
A key parameter for the correct and successful use of SLMs is the diffraction efficiency (DE). DE 
can be reduced by different sources of degradation of the displayed optical function. First, the 
SLM pixelated structure creates spurious diffraction orders [4]. However, in recent years, this 
improved dramatically thanks to the improvements of the fill factor (ratio between the pixel size 
and pixel pitch) achieved in modern liquid-crystal on silicon (LCoS) displays [5]. Other sources of 
DE degradation that may be present in SLMs are flickering [6], that causes a phase fluctuation 
effect, and fringing-field effect [7], which becomes more relevant as the pixel size is reduced. 
 
Another source of DE reduction is the complex modulation provided by the SLM. Any deviation 
from a perfect continuous and linear phase-only modulation with 2p modulation depth results 
in a DE reduction [8]. In fact, the efficiency reduction caused by a limited phase modulation 
depth was exploited to design a technique to encode amplitude information onto a phase 
grating [9]. 
 
In this work we analyze DE in terms of the number of phase steps (quantization levels). This 
subject has been extensively studied in the cases where the maximum phase depth is 2p [10-
12]. However, we found more interesting behavior for these cases where the phase depth is 
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larger. Multi-order diffractive lenses showing various cycles of 2p radians were studied due to 
their special spectral properties [13]. More recently the use of SLMs with such large phase 
modulation is becoming of great interest since it allows operating the DOE in higher harmonic 
orders [14]. This is very interesting to create uncommon spectral properties in diffraction 
gratings [15] and diffractive lenses [16]. Other uses of SLMs showing such large phase 
modulation have been demonstrated such as color computer generated holograms [17] or color 
displays [18]. In addition, large phase modulation can be used also to compensate for fringing 
effects in SLMs, and therefore to reduce pixel crosstalk [19].  
 
Very recently, we demonstrated that an SLM operating in such large modulation range can be 
used to surpass the classical resolution limit of diffractive lenses encoded onto pixelated devices. 
Highly efficient lenses with focal lengths much shorter than the classical Nyquist focal length 
limit were demonstrated [20]. However, this advance showed a requirement to further study 
the effects of phase quantization levels when this very large phase modulation regime is 
achieved. Thus, this is the goal of the present work. Here we use phase blazed diffraction 
gratings and analyze the DE in terms of the number of quantization levels and in terms of the 
maximum phase modulation range. We find some interesting situations when the number of 
phase levels is small, and the maximum phase modulation is large. This study is convenient for 
analyzing the imaging properties of diffractive lenses encoded in this way and defining a new 
Nyquist limit. The theoretical analysis is accompanied with experimental results that validate 
the theory, obtained with a LCoS-SLM device designed to operate at the near infrared (NIR) 
range, but operated at the visible wavelengths where it shows a phase modulation range up to 
10p radians for a wavelength of 458 nm. 
 
2. REVIEW OF THE FOURIER TRANSFORM ANALYSIS OF STEPPED GRATINGS 
We begin by analyzing the Fourier transform of a blazed phase stepped grating with a number 
N of equidistant phase steps, and a maximum phase depth of M2p radians. Figure 1 illustrates 
the phase profile, where d indicates the grating’s period. Note that each phase step has a width 
of d/N and the phases take values 0, b, 2b, 3b … (N-1)b, where b =	M2p/N denotes the phase 
jump at each step. 

 
Fig. 1. Phase profile of a blazed phase stepped grating with period d, maximum phase depth M2p and N steps. 

 
The Fourier series coefficient of this stepped phase grating is given by: 
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It is a straightforward calculation [11] to derive these coefficients, which are given by 
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Therefore, the relative efficiency at each diffraction order is given by: 
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We consider two limiting cases of this general situation: 
 
2.1 Case without quantization 
In this case for a continuous phase grating the limit N→∞ is considered, resulting in 
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where sinc(x)=sin(px)/(px). For M=0, all the energy starts at the zero order. However, as the 
phase depth varies in the range 0<M<1 the energy splits into the zero and first orders and is 
entirely in the first order when M=1. This is the situation that was exploited to encode amplitude 
in the technique in [8]. 
 
When the maximum phase modulation depth increases even more, the energy in the first order 
decreases while now is the second order which increases, reaching the maximum efficiency 
when M=2 [14]. If the maximum modulation continues increasing, thus having larger values of 
M, the energy is mainly distributed among the diffraction orders a=int(M) and a=int(M+1), 
where int(M) denotes the integer part of M. When M is a semi-integer the energy splits into two 
equally intense orders a=int(M) and a=int(M+1). And when M is an integer, all the energy is 
diffracted on to the diffraction order a=M. Figure 2(a) illustrates this energy transfer between 
successive orders as the value of M increases. 
 
2.2 Case with 2p phase modulation (M=1) 
This is the case where a stepped diffraction grating with N phase levels distributed along the 2p 
modulation range are considered. In this case M=1 and the general equation (3) adopts the 
result 
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When the order a=1 is considered, the classical relation for the diffraction efficiency [10] is 
retrieved 
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Figure 2(b) represents this classical relation of h1 versus N. When 𝑁 = 2 (binary phase grating), 
the efficiency at the first order is about 40.5%, it is about 68.4% for 𝑁 = 3 levels, and it reaches 
more than 91% with only 𝑁 = 6 levels.  
 

 
Fig. 2. Diffraction efficiency in two limits: (a) ha versus M for orders a=0,1,2,3,4 in case there is no quantization 

(N→∞) (b) h1 versus the number N of phase quantization levels for the standard case M=1. 
 
Before discussing other results, we will discuss our experimental setup. That will allow us to 
examine the agreement between theory and experiment in a more convenient way. 
 
3. EXPERIMENTAL SETUP AND RESULTS 
3.1 Experimental system 
Both universities participating in this work have developed equivalent setups shown in Fig. 3(a). 
We used either an argon ion laser (blue line at the wavelength of 458 nm) or a collimated green 
laser-diode-pumped DPSS laser module from Thorlabs (model CPS520, with a wavelength of 520 
nm). The laser beam passes through a spatial filter and a collimating lens and is sent through a 
1” non-polarizing beamsplitter (NPBS) to a reflective LCoS-SLM device. A linear polarizer selects 
the polarization component parallel to the LCoS director. The light is reflected by the LCoS 
device, and passes again through the NPBS to a detector. The system is rather compact. 
 
We used a Hamamatsu LCoS device (model X10468-08) designed for use in the 1000-1500 nm 
range for telecommunication applications. This series of devices are characterized by displays of 
792´600 pixels with a pixel spacing of D=20 µm. The device was calibrated by placing it between 
crossed or parallel polarizers and studying the reflection as a function of gray level [21]. The 
LCoS device provides a phase modulation depth up to 8p when using the green wavelength of 
520 nm, where the gray level supplied by the computer controls the phase level. And for the 
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blue wavelength of 458 nm of the argon laser it is even larger, reaching a maximum phase of 
10p [20]. A phase difference of 2p is achieved approximately every 64 gray levels for the 
wavelength of 520 nm, and every 50 gray levels for the wavelength of 458 nm. Therefore, this 
device allows reaching values M=1, 2, 3, 4, and even 5 for these wavelengths. 
 

 
Fig. 3. (a) Scheme of the optical setup. Images addressed to the LCoS SLM to generate (b) A stepped blazed grating 

grating with N=4; (c) The same grating plus the focusing lens. 
 

Blazed diffraction gratings have been programmed with different values of M and N in order 
to analyze the diffraction efficiency in these cases. In all cases a period of 60 pixels was selected. 
This large value was selected to stay far from the resolution limit and avoid overlapping with 
secondary orders generated by the pixelated structure of the device [22]. It also prevents the 
measurements to be affected by pixel crosstalk due to fringing effect, which is much stronger 
for small periods [19]. 

 
Since the LCoS device is not designed to operate at the visible wavelengths, a significant 

portion of the input beam is reflected by the optical coating and is not being modulated by the 
device, thus contributing additionally to the zero-order component. In order to avoid this 
additional effect, the phase function of a lens was added to the phase function of the grating. 
This way, the lens encoded on the SLM focuses the diffracted orders generated by the encoded 
grating (instead of using a physical external lens to focus them). The light reflected from the 
optical coating is not affected by the lens encoded on the SLM and therefore remains as an 
unfocused plane wave that simply adds a slight background to the diffraction orders. 

 
The grating and lens patterns are formed on a 1024´1024 array and overfill the LCoS screen. 

The encoded lens has a focal length of f=75 cm, much larger than the effective Nyquist limit 
given by fN=52.4 mm for 458 nm or fN=46.1 mm for 520 nm [20]. Figure 3(b) shows, as an 
example, the central area of the image addressed to the display to generate the stepped blazed 
grating with N=4 steps. And Fig. 3(c) shows the corresponding image when the lens is added to 
the grating. The lens is encoded using 50 or 64 gray levels, so it operates as a standard blazed 
diffractive lens with M=1. 
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For most of the experiments, we used a Basler camera (model acA1300-200um) to record the 
intensities of the diffracted peaks in the Fourier plane of the encoded lens function. This camera 
has 1280x1024 pixels having a size of 4.8 µm. It uses a Pylon Viewer software that allows to 
directly obtain quantitative measurements of the intensity. 
 
Next, we compare theoretical predictions with experimental results. In most of the experiments 
we use the wavelength of 520 nm, and we select three different modulation regimes 
corresponding to M=1, 2, and 3 (maximum phase depth of 2p, 4p and 6p). A remaining 2p phase 
modulation is left to encode the lens. For each case the diffraction pattern is captured for a 
number of levels from N=2 up to 16. The captures show orders from a=-5 to a=+5. 

 
3.2 Standard case with 2p phase modulation (M=1) 
We first review the case where the modulation depth is 2p corresponding to M=1. Figures 4(a) 
to 4(d) show the expected relative intensity of each diffraction order as N increases. For each 
case, on the right, a profile of the phase function in one period is drawn. It is interesting to note 
how the most intense diffraction orders after the target order a=1 are those with a=1±N. 
 
Experimental results are shown in Fig. 4(e) for this case and experimental results agree with the 
theory. 
 

 
Fig. 4. (a)-(d) Expected relative intensity of diffraction orders versus the number N of phase quantization levels for 

the standard case M=1. The phase profile in one period is drawn for each case. (e) Corresponding experimental 
results. 

 
 
 
4. DIFFRACTION EFFICIENCY FOR LOW QUANTIZATION LEVELS AND LARGE PHASE 

MODULATION 
 
In this section we explore some interesting intermediate cases, derived from the general 
Equation (3) that occur when a small number N of quantization levels are considered combined 
with large phase modulation values of M.  
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A first important point to note is that when the number of phase quantization levels is N=2M, 
then each phase step is of p radians. Therefore, the phase grating becomes equivalent to a 
binary phase grating with p phase shift, and most of the energy (81%) is split in two symmetric 
diffraction orders, each one receiving 40.5% of the energy. In the standard case when M=1, this 
happens for the minimum possible value N=2, shown in the first graph of Fig. 4.  
 
However, for larger values of M the binary phase grating is reproduced with larger N, and very 
interesting effects are produced when N is decreased even more, N<2M. 
 
4.1 Case with M=2 
A first example of this situation is shown in Fig. 5, which corresponds to the case M=2 (maximum 
phase shift of 4p). We first note the pattern when N=2 is considered (Fig. 5(a)). In this situation, 
the two levels have phases 0 and 2p respectively, i.e., there is no phase difference between the 
two levels. As a consequence, all the energy is focused on the zeroth diffraction order. 
 
A second much more interesting case happens for N=3 (Fig. 5(b)). Interestingly the most intense 
order is now a=-1, with a relative intensity of 68.4%. This “opposite” diffraction can be easily 
understood by looking at the grating phase profile drawn in the figure. The three phase levels 
take values of 0, 4p/3 and 8p/3. By subtracting multiples of 2p equivalent phase values can be 
obtained and the grating’s profile can be regarded equivalent to having phases 0, -2p/3 and 
-4p/3. Note that this is equivalent to the standard case of N=3 shown in Fig. 4 (M=1) but 
oriented in the opposite direction, thus diffracting in opposite angle. This effect was noticed 
many years ago and proposed to diffract different colors in opposite angles [22]. 
 
The diffraction pattern when M=2 and N=4 is considered in Fig. 5(c) and reproduces the binary 
phase grating. Now the phase steps take values of 0, p, 2p and 3p. After considering modulo 
2p, this is equivalent to a binary p-phase grating, but with half the period with respect to the 
original grating. This is the reason why the two most intense diffraction orders (with the 
efficiencies of 40.5%) are now a=±2. The next more intense orders are at a=±6. 
 
If the number N continues increasing, then the energy starts to concentrate on the order a=+2, 
as expected from the result without quantization described in Fig. 2(a). For N=5 the phase steps 
are of 4p/5 (Fig. 5(d)). The phase profile after considering modulo 2p results in a phase profile 
that resembles those of the non-synchronously sampled gratings analyzed in [24].  
 
For N=6 the phase steps are of 2p/3 (Fig. 5(e)). The phase profile after modulo 2p results in the 
standard blazed grating with M=1 and only N=3, but with half the period. Therefore, the same 
pattern shown in Fig. 4(b) (case N=3) is now reproduced in Fig. 5(e) (case N=6) but located at 
diffraction orders with twice the indices a. 
 
It is also interesting to note in the last two cases in Figs. 5(d) and 5(e) how the most intense 
orders, after a=+2, are those with a=2±N. Therefore, as N increases the energy not going to 
the main diffraction order is splitting further apart to higher harmonic orders. 
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All the experimental results shown in Fig. 5(f) agree very well with these expected results. 
 

 
Fig. 5. (a)-(e) Expected relative intensity of diffraction orders versus the number N of phase quantization levels for 

the case M=2. The phase profile in one period is drawn for each case. (f) Corresponding experimental results. 
 
4.2 Case with M=3 
As a second example, Fig. 6 shows equivalent results but now the SLM can reach M=3 (maximum 
phase shift of 6p). In the first plot, for N=2, now the two levels have phases 0 and 3p 
respectively, i.e., reproduces a binary p-phase grating, and the diffraction orders a=±1 therefore 
have equal efficiency of 40.5% (Fig. 6(a)). For N=3 levels, now the phase step is of 2p, and 
therefore there is no grating, and all the energy is concentrated on the zero order (Fig. 6(b)). 
 
The diffraction pattern becomes interesting for N=4. Now the phase steps are of 3p/2 (Fig. 6(c)). 
The most intense order is a=-1, with an efficiency about 81%. To understand this pattern, we 
can again subtract multiples of 2p to the different steps and show that the grating’s profile has 
phase values equivalent to 0, -p/2, -p and -3p/2. This is equivalent to the standard blazed 
grating with four levels, but again diffracting in the opposite angle. A similar argument explains 
the case for N=5, although now the most intense order is a=-2 (Fig. 6(d)). This grating profile 
again reproduces those of non-synchronously sampled gratings [24]. 
 
A transition from “opposite” diffraction to the standard non-stepped case is produced now 
when N=6. For this case the phase difference between steps is of p and therefore a binary phase 
profile is again reproduced, now with one third of the original period (Fig. 6(e)). This is why the 
two orders receiving each 40.5% of the total energy are now a=±3.  
 
After this transition, when N is greater than 2M then the energy starts to concentrate on the 
order a=M, as expected form the limit without quantization. In this case the first value is N=7, 
as shown in the last graph in Fig. 6(f). 



9 
	

 
Experimental results shown in Fig. 6(g) again agree very well with all these predictions. 

 
Fig. 6. (a)-(f) Expected relative intensity of diffraction orders versus the number N of phase quantization levels for 

the case M=3. The phase profile in one period is drawn for each case. (g) Corresponding experimental results. 
 
4.3 Quantitative measurements of diffraction efficiency with the number of steps 
In order to quantitively compare the different cases, Fig. 7 shows the diffraction efficiency ha as 
a function of the number of steps N, for the diffraction order a=M for cases M=1,2,3,4. The 
general Eq. (3) that describes the efficiency as a function of N and M, reads as: 
 

 𝜂"9,(𝑀,𝑁) = K
CDE';A= 8
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when the order a=M is considered. This relation thus represents a generalization of the classical 
law (Eq. (5)) of the standard case M=1 for higher values of M. 
 
The continuous curves in Figs. 7(a) to 7(d) show 𝜂"9,  as a function of N for the cases M=1,2,3 
and 4 respectively. They all show an asymptotic tendency to maximum efficiency as N reaches 
large values. The dots in this figure indicate experimental measurements. These experimental 
values have been obtained by measuring the intensity at the corresponding diffraction order for 
gratings with the same period but different values of N. The values are normalized to the 
intensity measured for a very large value of N (about 60), that can be considered to lead to the 
maximum efficiency. We remind that we use gratings with a period of 60 pixels. For this value, 
the encoded stepped gratings show the same number of pixels in each step for cases N=2, 3, 4, 
5 and 6. For other values we approximate the transition from one step to the next one by the 
closest pixel.  



10 
	

 
In order to quantitatively measure their relative intensities we slightly defocused of the 
diffraction orders and added the values of the blur spots captured by the camera. The 
experimental results in Fig. 7 show very good agreement with the theory despite these 
approximations.  
 
Figure 7(a) shows the standard diffraction efficiency h1 of the a=+1 diffraction order versus N 
for M=1. Note that a diffraction efficiency of about 70% is achieved with only N=3 levels. 
Similarly, Figs. 7(b) and 7(c) show the diffraction efficiencies h2 and h3 for M=2 and M=3 
respectively. Note that an efficiency of 40.5% (binary phase grating) is achieved for N=2, N=4, 
N=6 and N=8 in Figs. 7(a), 7(b), 7(c) and 7(d) respectively. Finally, Fig. 7(d) shows that an 
efficiency of 70% requires N=12 levels. 
 
The results in Fig. 7(d) cannot be obtained directly as the other cases for the wavelength of 520 
nm. Since the LCoS-SLM provides only M=4, which are employed to display the grating, we need 
additional 2p of phase to encode the lens. This can be done with the wavelength of 458 nm. 
However, it is possible to encode the sum of the M=4 grating with the lens and only use 8p of 
phase. In the pixels where the phase exceeds 8p we simply subtract 2p. Since we are operating 
with monochromatic light, this operation provides an equivalent phase function. The 
experimental results in Fig. 7(d) justify this approach for this example.  
 
All cases in Fig. 7 show that for larger N the energy concentrates in the corresponding order 
(a=M), in agreement with the limit without quantization shown in Fig. 2(a). However, as the 
value of M is greater the increase of the efficiency to the corresponding order is slower. 
 
These data show opposite consequences of using these higher modulation levels. On the one 
hand, we get an enhancement of the phase encoded by the LCoS as shown in Ref. [20], where 
the focal length of a lens was reduced by a factor of M. On the other hand, the diffraction 
efficiency is reduced as the number of encoded levels decreases. Our results seem to favor the 
former advantage. Note that a diffraction efficiency of 70% is achieved for N=3 levels when 
M=1. On the other hand, the same diffraction efficiency requires N=6 levels when M=2, N=9 
pixels when M=3, and N=12 levels when M=4. 
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Fig. 7. Diffraction efficiency versus the number N of phase quantization levels. (a) h1 for M=1. (b) h2 for M=2. (c) h3 

for M=3. (d) h4 for M=4. Dots indicate experimental measurements. 
 
4. CONCLUSIONS 
In summary, this work provides an analysis of the effects of phase quantization in spatial light 
modulators showing large values of phase modulation range. This study is relevant since such 
regimes of phase modulation are receiving increasing interest to display diffractive optical 
elements with novel features. In particular, we recently showed how operating at this large 
modulation regime can be used to surpass the classical Nyquist resolution limit for the shortest 
focal length of a diffractive lens that can be encoded in the SLM without being affected by 
aliasing. 
 
In order to understand the properties of diffractive elements operating at this large phase 
modulation regime, it is necessary to study the diffraction mechanisms when we approach the 
resolution limit. In this work we displayed blazed phase gratings but changed the number of 
phase quantization steps (N) and the maximum phase modulation range (M2p). The case when 
the number of phase steps is N=2M is identified as transition. For this case the grating operates 
as a binary p-phase grating diffracting light mainly to orders a=±M, each one receiving 40.5% of 
the relative efficiency. 
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For N>2M the light efficiency concentrates at the diffraction order a=M following the expected 
tendency to increase the efficiency as the number N increases. Equation (6) represents the 
generalization to higher values of M of the classical formula in Eq. (3) for the standard case with 
M=1. 
 
Some interesting diffraction phenomena occur when the number of quantization levels is N<2M. 
In this situation, the phase steps in the grating are so big that the grating’s blazed phase profile 
is under-sampled, producing situations where the most intense order is not the expected a=M; 
on the contrary, for some cases the most intense order appears in opposite angle. We have 
presented equivalent phase profiles by subtracting 2p steps, which explain this behavior. 
 
Finally, we have presented experimental verification of all these effects by using a LCoS-SLM 
device that shows a phase modulation as large as 8p radians for 520 nm or 10p radians for 458 
nm. To achieve this very large phase modulation regime we use a device intended for use in the 
infrared range, but illuminated with these short visible wavelengths. In order to achieve good 
results, the SLM encodes simultaneously the grating and a lens that focuses the diffraction 
pattern onto the detector, while the non-modulated component of the input beam (reflected 
by the antireflection coating on the device, designed to transmit IR wavelengths) remains 
unfocused and contributes only to some background weak noise to the diffraction orders 
pattern.  
 
Similar results were obtained at both wavelengths. We present here the data at 520 nm for this 
work to remain consistent and because that data is the most recent. 
 
We believe this study is interesting for users of SLMs and can contribute to extend the recent 
interest in using devices with very large phase modulation. It can be useful also to redefine 
classical concepts of diffractive optics, like the Nyquist limit of the focal length [20] imposed by 
the spatial resolution. 
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