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Abstract: When encoding diffractive lenses onto a spatial light modulator (SLM), there is a 

Nyquist limit to the smallest focal length that can be formed. When this limit is surpassed, a 

two-dimensional array of lenslets is formed. There have been very few discussions of the 

performance of these lenslets. In this work, we focus on the phase distribution of these lenses 

in the array. We show that, for certain values of the focal length, the lenslets are all in perfect 

phase. We show that this situation happens for a total number of N/ 4  discrete equidistant sub-

Nyquist different focal lengths, where N ´N  is the number of pixels in the SLM. We find 

other distances in between where the array is composed of two sets of lenslets with a relative  

phase among them. Finally, we illustrate these phase distributions in the application to generate 

an array of vortex producing lenses. We expect that these results might be useful for high 

accuracy interferometric or multiple imaging where this phase must be exactly the same for 

each replica. 
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1. Introduction 

Modern liquid crystal spatial light modulators (SLM) [1] have resulted in 2D pixelated arrays 

with thousands of pixels and pixel dimensions about a few microns. This high resolution 

motivated their use in optical processing, pioneered in [2]. SLMs are nowadays used routinely 

to display dynamic diffractive optical elements (DOE) in all types of applications [3]. 

One of the easiest and most useful applications of SLMs is the capability to encode 

diffractive lenses. Lenses can be made as converging or diverging, and anamorphic lenses can 

also be easily encoded. However, there are limits to the smallest focal lengths that can be 

encoded because of the limited spatial resolution. These occur because the period of the 

quadratic phase function decreases as the focal length decreases. 

Some time ago [4], our group defined this Nyquist limit for the shortest focal length that 

can be encoded on the SLM when this smallest period equals two pixels. In that work, we 

examined lenses where the focal length was much shorter than the Nyquist limit. We found that 

this process forms a lenslet array that produces several equally intense focal points. We were 

also able to encode the Fourier transform of an object onto the lenslet array. In this case, we 

showed that each of the lenses formed the Fourier transform producing an array of identical 

images. Although it was noticed that the phases on each lens were different and it was realized 

that there would be phase shifts in the encoded output points, these early works were centered 

on the intensity of the multiple focal spots using binary-phase SLM devices [4,5]. 

However, the great advances in micro-optics technology and in SLM technology, led to a 

renovated interest in micro-lens arrays (MLA) in applications such as wave-front sensors [6], 

integral imaging [7], multiple optical trapping [8], or miniature interferometers for nano-

metrology [9]. In these applications, the intensity, but also the phase shift of the focus spots can 



be relevant in their correct performance. This might also be of interest in holographic imaging 

approaches because the interference between the reference beam and each beam from the array 

would change [10], or in detector arrays with improved fill factor where diffractive microlenses 

are employed to increase the concentration factor [11]. 

In this work, we analyze the phase-shift between these multiple lenses in the lenslet array 

that is generated with a sub-Nyquist encoded lens, in this case using a continuous phase-only 

SLM. Analytical expressions are derived for the phase-shift at each sublens, and the conditions 

for all of them to be in-phase are found. For a SLM containing N ´N  pixels, we find that there 

is a total number as large as N/ 4  of different sub-Nyquist focal lengths that fulfill this 

condition. We show how to control the relative phases of the lenses. 

Another area where these lenslet arrays are of interest is in the field of vortex and vector 

beams. Recently there has been reports of the fabrication of micro-arrays for the parallel 

processing of orbital angular momentum [12]. It is well known that the combination of a lens 

function and a spiral phase function produces a spiral lens pattern generating vortex beams [13]. 

Vortex microlens arrays have been fabricated using combined refractive/diffractive techniques 

[14]. However, we show here that sub-Nyquist vortex lenses only generate the vortex beam in 

the central lens. Thus, we propose a simple alternative technique to effectively generate vortex 

beams in all of the sub-lenses in the array. We show that the same conditions for relative phase-

shifts between sub-lenses hold in this situation compared to the standard one, and all in-phase 

vortex beam arrays are generated with the same values of the encoded focal lengths.  

In all cases we show experimental evidence of the phase-shift between sub-Nyquist lenslet 

arrays. For that purpose, we use a simple common-path polarization interferometer based on 

the liquid-crystal SLM itself [15]. 

The paper is organized as follows: after this introduction section, we include a theoretical 

section that reviews the mathematics of lenses with the sub-Nyquist focal lengths and the phase 

relationships between the various sub-lenses in the generated array. Next, we review our 

experimental system and its configuration as a common-path polarization interferometer. We 

show experimental results where we vary the phase relationships between the various focal 

spots. Next, in Section 4, we show how to add a spiral phase to each of the lenslets in order to 

generate an array of vortex beams. Finally, we present the conclusions of the work. 

 

2. Theory for sub-Nyquist focal length lenses encoded onto SLMs 

A converging Fresnel lens is generated onto a phase-only SLM by writing a quadratic phase-

only function Z* ( f ) that depends of the desired focal length (f) and the wavelength () of the 

inut light as 

 Z* = exp
ip x2 + y2( )
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Here (x,y) denote the spatial coordinates on the SLM, typically measured in microns. We 

rewrite these positions in terms of the SLM pixel spacing D  as x = pD  and y = qD , where 

(p,q) are integer numbers, p,q = -(N/ 2)+1,...-1,0,+1,...,N/ 2 , where N ´N  denotes the 

number of pixels in the SLM array. 

As stated earlier, the phase steps become closer as we move to the edge of the array. 

Accordingly, we defined [4] the Nyquist limit focal length fN  as the focal length that gives a 

a period of two pixels at the edge of the SLM, leading to 

 fN =
ND2

l
. (2) 



Figure 1(a) shows the lens phase function at this limiting focal length, represented in an array 

with N = 1024 , assuming a wavelength of l = 0.6328microns and a pixel spacing of D = 20
microns, that reproduce our experimental conditions. In this case the Nyquist focal length is 

fN = 647.282  mm. Note how the aliasing starts to give secondary lenses at the edges and at 

the corners of the image. 

 

 

Fig. 1. Phase patterns for a lens (a) having the Nyquist focal length fN  and (b) having a focal 

length of f = fN / 3 . The lens is encoded with N = 1024 . 

Now we consider the case where the focal lengths are smaller than this as f = a fN . An 

example is shown in Fig. 1(b) where a = 1/ 3 . We see an array of 3´ 3  lenses. However, we 

note in Fig. 1(b) that there are phase differences between these lenses. These differences are 

shown by the fact that the central area of each lens has a different gray level corresponding to 

a different phase shift. This will not affect the intensity of the focused spots, but introduce 

problems if we wanted to form focused spots or images with identical relative phase. 

We can examine these conditions more closely. Examining Eq. (1), we see that it can be 

rewritten as: 

 Z* = exp
ipD2 p2 + q2( )
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where m,n( )  are integer values so the second exponential term in Eq. (3) is simply multiplying 

the lens pattern by one. Equation (3) can be further developed to read as 

 

Z* = exp
ipD2

l f
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Therefore, this shows that replications of the central Fresnel zone function will occur at 

coordinates that satisfy 

 xm ,yn( ) = m
l f

D
,n

l f
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= maND,naND( ) , (5) 



where we used the relations that f = a fN = aND2 / l . This indicates that these replicas will 

be separated in the x,y( ) plane by distances of  

 
l f

D
= aND . (6) 

In addition, Eq. (4) shows that these replica zone functions will have relative phases given by 

 fmn = -
pl f

D2
m2 +n2( ) . (7) 

Therefore, note that all of these zone functions will be in phase provided that 

 
pl f

D2
=

pla fN
D2

= 2pk . (8) 

Here k  is an integer. Using the definition of the Nyquist focal length in Eq. (2), this sets 

requirements on the focal lengths that are satisfied by a discrete number of distances fk , given 

by 

 fk =
2D2

l
,
4D2

l
,
6D2

l
...
ND2

l
. (9) 

which, written in terms of the Nyquist focal length, are given by  

 fk =
2k

N
fN . (10) 

where now a = 2k/ N . Thus, note that there are N/ 4  different focal length distances that 

satisfy these conditions, all equally separated by a distance 

 d f =
2D2

l
. (11) 

We also note that there is another set of distances in between for which the lenses in the array 

will be out of phase when the focal length is displaced by d f / 2  from the values in Eq. (9). 

We examine these conditions. We again assume a wavelength of l = 0.6328  microns, a 

pixel spacing of D = 20microns, and an SLM with 1024´1024 pixel array, i.e. with a Nyquist 

focal length of fN = 647.282mm. Next, we show two examples. Figure 2(a) shows only the 

central area of 256´ 256  pixels of the phase pattern created for a focal length of 

f = fN / 16 = 40.455mm corresponding to f = 54D2 / l  from Eq. (9) or k = 32  in Eq. (10). 

Note how all the lenses in the array in phase. 

By contrast, Fig. 2(b) shows the case where the adjacent lenses are out of phase and 

corresponding to a focal length of f = fN / 16( )+ d f / 2( ) = 41.087mm. This focal length is 

displaced by d f / 2 = D2 / l = 0.632mm, according to Eq. (11). Similar results were found for 

the shorter focal length of f = fN / 16( )- d f / 2( ) = 39.823mm. Therefore, for these distances, 

the complete lenslet array can be regarded as composed by two complementary arrays with 

lenses aligned diagonally, separated by distances 2l f / D  and with a relative  phase shift 

between them. 

At intermediate focal lengths, the relative phase shifts change between these two situations.  

Before discussing other results, we will discuss our experimental setup. That will allow us 

to examine the agreement between theory and experiment in a more convenient way. 

 



 

Fig. 2. Phase patterns for (a) a lens having the focal length of f = fN / 16 = 40.455mm and (b) 

a lens having a focal length of f = fN / 16+d f / 2 = 41.087mm. Only the central 256´ 256 

pixels are shown. 

3. Experimental setup 
In our experimental setup shown in Fig. 3, light from a He-Ne laser is spatially filtered and 

collimated and is sent through a 2” non-polarizing beamsplitter (NPBS) to a reflective liquid-

crystal on silicon (LCoS) SLM device. We used a Hamamatsu LCoS device (model X10468-

01) designed for the visible range and having a phase modulation depth of more than 2  at the 

He-Ne laser wavelength of l = 0.6328microns. These devices are characterized by displays of 

792´600  pixels with a pixel spacing of =20 m. The light is reflected by the LCoS-SLM 

device, and passes again through the NPBS to a WinCam detector. The input beam has a 

circular shape with a diameter of about 7.5 mm, corresponding to less than 400 pixels. Within 

this area we did not observe a significant aberration effect from the beam splitter or from the 

LCOS-SLM backplane. 

The lens patterns are generated on a 1024´1024 pixel array. The output from the computer 

goes to an electronic splitter and then to both the LCoS-SLM and a monitor. We overfill the 

display in both directions. In most cases, the short focal lengths form images within the NPBS. 

So, we used a 20 cm focal length lens (L2) to image these patterns onto the detector with the 

additional advantage that the output fit within the sensitive area of the detector. 

We employed a self-referencing interferometer technique [15] for examining the relative 
phase shifts for each focus. We introduced a polarizer (P1) in the incident beam so that there 

was a vertical component oriented perpendicular to the director axis. This component is not 

affected by the LCoS-SLM and is the reference beam in the interferometer, while the 

horizontally oriented component would have the lenslet array encoded onto it. Then we place 

another polarizer (P2) in front of the detector that allowed parallel components of these two 

beams to interfere. We deliberately put the images slightly out of focus in order to decrease 

their intensity and to make the interference more visible. 

 



 

Fig. 3. Scheme of the optical setup. 

 

4. Experimental results 
Figure 4(a) shows the experimental capture at the CCD detector corresponding to the output 

for the array shown in Fig. 2(a) with the focal length of 40.455 mm. The experiment shows a 

background corresponding to the reference beam (polarization component perpendicular to the 

liquid-crystal director), and shows the interference with the spherical waves originated at the 

lenses in the array. It is clear that all of the focus points have the same phase.  

By contrast Fig. 4(b) shows the output for the array in Fig. 2(b) using a focal length of 

41.087 mm (i.e., when the focal length is displaced by d f / 2 ). Again, it is obvious that 

adjacent focus spots have  phase shifts. We note that a similar pattern to Fig. 4(b) was also 

seen for a focal length of 39.823 mm. Note that the number of lenslets in the array is the same 

since there is only a very small variation of less than 0.02 microns in the distance between 

lenslets in the two cases shown in Fig. 4. 

 



 

Fig. 4. Experimental output interference patterns for (a) lens array from Fig. 2(a) at a focal 

length of 40.455 mm, with all lenslets in phase (b) lens array from Fig. 2(b) at a focal length of 

41.087 mm, with two subsets of lenslets out of phase. 

 

We can also examine intermediate distances. Figures 5(a) and 5(b) show the interference 

patterns at intermediate focal length distances of 40.139 mm and 40.771 mm. These arrays are 

obtained by shifting the focal length by a quarter of d f  on either side of the pattern in Fig. 

4(a) with focal length of 40.455 mm. This involves shifting the focal length by a total of only 

0.316 mm. Although the result looks similar to that in Fig. 4, there are several subtle differences 

that we discuss where we emphasize the central 3×3 spots.  

First, we see that now the diagonal spots are out of phase with respect to the central spot. In 

addition, the four spots that are above, below, left, and right of the central spot shift their phase 

relationship from +/2 to −/2. These variations are caused by the different phase values at 

each sublens (m,n)  given by the term (m2 +n2)  in Eq. (7). 

 

Fig. 5. Output interference patterns for (a) lens array at a focal length of 40.139 mm, (b) lens 

array at a focal length of 40.771 mm. 

 

5. Encoding vortices onto each focus 
Next, we wanted to encode a lenslet array where each focus creates a vortex beam. We again 

used the focal length of f = fN / 16 = 40.455  mm shown in Fig 2(a). We found that, if we 

simply multiplied the lens by a spiral phase, only the central lens shows the characteristic spiral 

pattern of a diffractive vortex lens [13] as shown in Fig. 6(a). The rest of the lenses created by 

the sub-Nyquist array effect do not show the spiral pattern and they all appear as regular lenses, 

but with a relative phase factor among them that changes azimuthally. This figure shows only 

the central 256´ 256 pixels area in order to more clearly see the differences. Therefore, a 



vortex beam would be created only in the central focalization, which will have a typical 

doughnut shape, while the rest of the focal points will have the usual bright spot.  

However, we used a trick to overcome this limitation and generate an array of vortex lenses. 

The sequence was a follows. We created the lens, took its Fourier transform, multiplied this by 

a spiral phase in the Fourier domain, took the inverse Fourier transform, and finally divided by 

the magnitude to create the phase-only pattern that can be displayed on the SLM. The result in 

Fig. 6(b) shows that this was successful and now all the lenses in the array exhibit the spiral 

pattern, thus all of them creating a vortex beam. This process can be explained as now 

producing the convolution of the original lenslet array with the spiral phase pattern, thus 

replicating the spiral pattern on each sublens of the array. Also note that, since we started from 

a lenslet array where all the lenses were in phase, this situation persists in the vortex array. This 

is visible in the fact that every spiral lens has the starting point of the spiral in the same angle. 

Next, we examined the results when we changed the focal length to f = ( fN / 16)- (d f / 2) 

= 39.823mm, where the adjacent lenses have a relative π phase-shift. Figure 6(c) shows this 

case and it shows clearly how adjacent lenslets are out of phase. Since the spiral phase mask is 

an azimuthal grating, the π phase shift has the effect of rotating the origin of the spiral phase 

mask by 180°. Figure 6(c) shows that adjacent spiral phase masks have this rotational 

difference. 

 

 

Fig. 6. Phase masks comparing the case where (a) the lenslet array is multiplied by the spiral 

phase function and (b) the convolution of the two functions. In both cases, we used a focal 
length of 40.455 mm to have an array in phase. (c) Showing the same case as in (b) but now 

with the focal length of 39.823 mm to have an array out of phase. Only the central 256×256 

pixels are shown. 

 

Finally, we examine the experimental results for these arrays showing the interference 

between the reference beam and these vortex beams. Figure 7 shows the experiments 

corresponding to the patterns in Figs. 6(b) and 6(c). Experiments show that this approach is 

successful. In both cases the interferogram array shows spiral fringes verifying the effective 

generation of an array of vortex beams. In Fig. 7(a), the vortex beams in the array are all in 

phase, as it can be noticed because they all have the spiral interference pattern starting at the 

same angular position. On the contrary, the result in Fig. 7(b) exhibit the rotational difference 

of 180 degrees in the spiral pattern in adjacent lenses, as expected. 

 

 



 

Fig. 7. Experimental interference patterns for the masks from Fig. 7(b) and 7(c). Images are 

captured in a defocused plane in order to visualize the interference pattern. 

In Fig. 8 we provide additional results, captured at the plane where the beams focus. Here 

we present results of the central 3x3 spots, all three for the case with focal length 

f = fN / 16 = 40.455. In Fig 8(a) no vortex is added, so the phase mask is that presented in Fig, 

2(a). Now the standard bright focalization is observed in all spots. When we add the spiral phase 

and generate a phase mask like in Fig. 6(a), the central spot becomes the typical doughnut focus 

as shown in Fig. 8(b), but the rest remain as bright spots. In order to better visualize the effect, 

we added a spiral phase with topological charge ℓ= 6  to create a circle with bigger diameter. 

Finally, in Fig. 8(c) we present the result when we follow the convolution process. Again a 

topological charge of ℓ= 6  is applied. Note how now all spots succesfully show the doughnut 

shape.  

 

 

Fig. 8. Experimental focused plane for (a) a lens with focal length of 40.455 mm showing; (b) 

the same lens with an added spiral phase of topological charge ℓ= 6 ; (c) equivalent result 

when the convolution procedure is applied. Only the central 3x3 focal spots are shown. 

 

6. Conclusions 
Past work on lenslet arrays generated by encoding sub-Nyquist lenses in SLMs was focused 

primarily on the intensity relation between the focal points. Although variations in the phase 

were noted, no further research was carried out in that direction. In this work, we investigated 

the phase distribution of these lenslets which lead to analytical expressions that can be used to 

produce arrays in which all lenslets and corresponding focal points are in perfect phase. We 

found that there are N/4 different sub-Nyquist focal distances that fulfill this condition, and they 

are equidistant. In addition, the focal distance intermediate between two consecutive such in-

phase lenslet patterns generate a similar array but with two subsets of lenses out of phase.  

Then we examined sub-Nyquist vortex lenses by adding a spiral phase to the lens pattern. 

We found that the lenslet array is generated as well, but only the central lens exhibits the spiral 



pattern. Instead, we achieved a lenslet array which can produce vortex beams at all its foci by 

using a convolution procedure. This procedure demonstrated the successful realization of an 

array of vortex lenses. We then employed the equations previously derived to manipulate the 

phase distribution of adjacent vortex beams. This technique manifested itself as a 180° rotation 

in the spiral phase mask of adjacent lenslets. In all cases, results were confirmed 

experimentally. 

Although this method of creating the lens array offers less flexibility than writing them 

independently, it offers a practical advantage of being faster and easier since it is not necessary 

to locate the points where each array would be located. 

The results presented here have been validated with monochromatic light. When 

applications require the use of polychomatic light, other effects like chromatic aberration or 

wavelength dependent diffraction effciciency must be also considered. LCoS-SLMs with very 

large phase modulation, with various cycles of 2 phase modulation can be used to reduce the 

chromatic aberration [16].  

These results suggest this technique can be applied to a variety of lenslet array DOE’s. 

Applications where microlens arrays are employed can benefit from their physical realization 

with SLMs. These include, among others, wave-front sensing, integral imaging, optical 

trapping, nano-metrology or holographic imaging.  
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