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Slow and fast light in three-beam interferometers: Theory and experiment
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We demonstrate the generation of slow and fast light (SFL) in a linear and passive three-beam interferometer.
Such propagation regimes occur for narrowband pulses with center frequency close to the transmission minima.
A model that fully describes SFL effects in this system is developed and an analytical approximate expression for
the group delay at the minima is derived. We demonstrate that slow light is not possible if the length difference
between adjacent branches of the interferometer is a constant. If a small length detuning (ξ ) in one of the
branches is introduced, slow light at one of the two minima can be obtained as long as ξ exceeds a critical value.
Simultaneously, tunneling, superluminal, or normal regime is sustained at the other minimum, depending on the
system’s length. A proof-of-model experiment is performed in the radiofrequency range using coaxial cables
and 1 × 3 power splitters. The possible realization and performance of such a system in the optical range is also
discussed. This system is proposed as a simple alternative to active systems and photonic band-gap structures for
sustaining both slow and fast light.
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I. INTRODUCTION

Research on slow and fast light (SFL) systems has increased
in recent years in the photonics community. Although the
possibility of propagating a light pulse in dispersive media at
unusually slow or fast group velocity is been known for many
decades [1], interest in this phenomena has been triggered
by their promising applications in optical communications
systems. In particular, the use of optical instead of electronic
delay lines and the development of optical buffers, switches
and synchronizers based on SFL systems have been suggested
[2–4].

The group velocity of a pulse is the velocity at which the
peak of its envelope propagates and is related to the frequency
(ω) variation of the medium’s refractive index n by

vg = c

n + ω dn
dω

. (1)

Thus, a steep positive spectral variation of the refractive
index (dn/dω > 0) can lead to a very small group veloc-
ity (vg � c) (slow light or subluminal pulse propagation),
whereas in the case of steep anomalous dispersion (dn/dω <

0) the group velocity can be larger than the speed of light in
vacuum c (superluminal pulse propagation) or even negative
(pulse tunneling). These latter cases are known as fast light.
Because of the Kramers-Kronig relations, such abnormal pulse
propagation regimes are associated to sharp spectral features
in the transmission spectrum [5].

Experimental evidence of SFL has been reported for a
myriad of systems exhibiting material resonances (gain or
absorption), like Bose-Einstein condensates [6], atomic vapors
[7], solid crystals [8,9], semiconductor waveguides [10],
semiconductor quantum wells and dots [11], and in optical
fibers [12–14]. It has also been reported in systems exhibiting
structural resonances (photonic band-gap systems, PBG), like
photonic crystals [15] and fiber Bragg gratings [16,17], where
the dispersion is due to coupling between the incident wave-
length and the system’s characteristic length. For such PBG

systems, experimental evidence of SFL has also been provided
in the microwave [18–20] and radio-frequency (RF) [21,22]
range. In fact, lower frequency setups have been relevant to
clarify important issues, like the puzzling advancement of
the outgoing pulse peak with respect to the incident pulse in
tunneling experiments (negative vg) [23], and have provided
experimental evidence of a theoretically proposed structure
exhibiting negative group delays in reflection [20]. They
have been also used to explore quasiperiodic structures, such
as Fibonacci or Thue-Morse, exhibiting strong normal and
anomalous dispersion [24].

Regardless of the frequency range, let us note that all the
aforementioned systems are either active (they respond to the
interaction with light by generating narrow, gain, or absorption
spectral bands) [6–11], exhibit nonlinear effects [12–14], or
are periodically structured [15–22,24]. Unlike them, we have
investigated the occurring of SFL effects in passive, linear, and
nonperiodical structures. In a previous work [25], we demon-
strated superluminal and negative group velocity in a linear and
passive Mach-Zehnder interferometer (MZI) operative in the
RF range. This behavior had also been outlined in Ref. [26] for
an equivalent system consisting of a single asymmetric loop
structure. We noted that anomalous dispersion in a narrow
frequency region around the interferometer’s transmission
minima is strong enough to hold fast light without the need
of microstructuring, doping, or using nonlinear media in the
interferometer’s arms. Slow light was, however, not observed
in a MZI [25]. Slow light is particularly interesting since
it improves the spectral sensitivity of interferometers [27]
and enhances light-matter interaction and hence nonlinear
effects [3].

Interestingly, the series loop structures studied by El
Boudouti et al. [26] do present subluminal regime when defects
are introduced. These structures may be regarded as MZIs
(asymmetric loops) connected in series through segments. Like
PBG systems, they exhibit bandgaps, and defect modes appear
inside the transmission gaps if one of the segments connecting
the loops is somehow changed (in length, for example). The
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situation resembles that of a doped photonic crystal, with
superluminal propagation for a pulse with center frequency in
the bandgap and subluminal propagation for a pulse with center
frequency at the defect mode. But unlike photonic crystals,
an outstanding characteristic of this serial loop structure is
the existence of bandgaps in a totally homogeneous material,
without the need of refractive index contrast (or impedance
contrast, if the system operates in the RF range as is the case
in Ref. [26]).

With the aim of generating SFL regimes in a linear and
passive interferometer, we have explored another alternative.
Instead of connecting in series several MZIs, we increase the
number of arms of a single interferometer. As a first attempt, we
considered a four-beam interferometer with a nominal length
difference (�) between adjacent arms [28,29]. The system
was built with coaxial cables and measurements were per-
formed for narrowband RF pulses centered at the transmission
minima (the system exhibits three minima between two main
transmission peaks). Simulations in the optical range for a
Si-micromachined interferometer were also analyzed [29]. It
was found that subluminal propagation only occurred if the
length of any of the interferometer’s arms was changed in
a very small fraction (ξ ) of the nominal length difference
�; otherwise, the pulse propagation regime was tunneling or
superluminal.

These results look appealing but there remain open ques-
tions: Why is slow light not obtained for a constant length
difference between the interferometer’s arms? Why is a small
length detuning ξ in one of the arms necessary to get a fast-slow
light transition? Is there a critical value for such detuning? Can
we predict, in terms of ξ , at which transmission minimum slow
light will arise?

The present paper addresses these questions. Figure 1 shows
a schematic that illustrates the concept of a lossless three-arm
interferometer showing the typical transmission spectrum. We
consider the simplest interferometer (least number of arms N )
where a length detuning in a branch implies a change in the
otherwise constant length difference between adjacent arms
(�). Note that this condition holds only for N � 3 (this
is why a MZI does not sustain slow light). We develop a
model that fully describes SFL effects in such a three-beam
interferometer. An exact expression of the group delay as
a function of frequency, attenuation, and length detuning is
derived. An approximate (but simpler) equation of the group
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FIG. 1. Schematic of a lossless three-arm interferometer and its
typical transmission spectrum.

delay at the transmission minima is given, and the critical
length detuning needed to obtain slow light at each minimum
is obtained. For the sake of generality, the theoretical results
are presented using normalized frequencies and normalized
group delays. A proof-of-model experiment is performed in
the RF range by using coaxial cables and 1 × 3 wave splitters.

This work is outlined as follows. In Sec. II the analytical
model is developed and its range of validity discussed.
Section III describes the experimental techniques used in the
proof-of-model experiments performed in the RF range. The
results and discussion of such experiments are given in Sec. IV,
where the frequency and time-domain characterization of sev-
eral three-beam RF interferometers is reported and their agree-
ment with theory is discussed. Basic figures of merit of the
proposed SFL system and a design in the optical range are dis-
cussed. Finally, Sec. V contains the conclusions of this work.

II. ANALYTICAL MODEL

We consider a plane wave, with complex amplitude of 3,
impinging on a three-arm interferometer. A 1 × 3 splitter di-
vides the wave in three equal components that travel along each
arm and then recombine by a 3 × 1 coupler. The transmitted
complex amplitude at the end of the interferometer is:

t =
3∑

i=1

ejφi , (2)

where φi is the phase factor of the wave propagating along
the ith branch, which, in turn, can be expressed as

φi = ω

v
Li + jαLi. (3)

In Eq. (3) ω is the angular frequency, v is the phase
velocity in the medium, Li is the ith arm length, and α is
the attenuation coefficient through the medium, which for
simplicity is assumed to be constant over the whole frequency
range. We define the length of each arm as:

L1 = L − �(1 − ξ ), L2 = L, and L3 = L + �, (4)

where � is the nominal length difference between adjacent
arms. A small length detuning (ξ � 1) in the first arm is
introduced to explore the induced transitions in the pulse
propagation regimes at the transmission minima. The effective
length of the interferometer is, thus [25],

Leff = (L1 + L2 + L3)

3
= L + ξ�

3
. (5)

By defining β as the phase associated to the nominal length
difference, �, i.e., β = ω�/v, the real and imaginary parts of
the transmission coefficient can be written as

Re = 1 + e−α� cos β + eα�(1−ξ ) cos[β(1 − ξ )], (6a)

Im = e−α� sin β − eα�(1−ξ ) sin[β(1 − ξ )]. (6b)

And the magnitude and phase of the transmission coefficient
can be expressed as

|t | = e−αL
√

Re2 + Im2, (7a)

φt = βL

�
+ arctan

(
Im

Re

)
. (7b)

Let us note that the above quantities depend on ω through β.
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We describe the propagation of an electromagnetic pulse
through the interferometer in terms of the group delay,
which is the time delay of the pulse envelope as it propa-
gates through the system [1]. Following the usually adopted
phase-time approach [18,23], the group delay is obtained
from the frequency derivative of the transmission coefficient

phase:

τg = ∂φt

∂ω
= L

v
+ Re ∂Im

∂ω
− Im ∂Re

∂ω

Re2 + Im2 . (8)

Therefore, the exact expression of the group delay through
the interferometer with constant attenuation α as a function of
frequency (through β) and length detuning ξ is then

τg

τp

= 1 + �

L

e−2α� − (1 − ξ )e2α�(1−ξ ) + e−α� cos β − (1 − ξ )eα�(1−ξ ) cos[β(1 − ξ )] + ξe−α�ξ cos[β(2 − ξ )]

1 + e−2α� + e2α�(1−ξ ) + 2e−α� cos β + 2eα�(1−ξ ) cos[β(1 − ξ )] + 2e−α�ξ cos[β(2 − ξ )]
. (9)

In Eq. (9), the group delay has been normalized by τp =
L/v, that is, the phase delay in the medium over length L.
Next, we analyze particular cases of attenuation and detuning.

A. Interferometer without detuning (ξ = 0)

Let us first consider the case where the length difference
between adjacent arms is a constant (ξ = 0), and thus the
interferometer effective length is Leff = L.

1. Lossless media (α = 0)

In this case, Re = 1 + 2 cos β and Im = 0. This implies that
transmission minima are located where cos β = −1/2; i.e., the
first and second transmission minima after a principal maxi-
mum of order m lie at β0

1 = 2π (m + 1
3 ) and β0

2 = 2π (m + 2
3 ),

respectively. From Eq. (8) it is then trivial to obtain the group
delay at the minima as τg/τp = 1. The group delay is identical
to the phase delay and, consequently, the group velocity equals
the phase velocity. Therefore, a lossless interferometer with
ξ = 0 cannot sustain anomalous propagation regimes. This is
not surprising, since in a linear system with nothing altering the
phase relation between the pulse components, the pulse peak
cannot be shifted and, hence, it travels at the phase speed.

2. Lossy media (α > 0)

If we consider a certain level of losses (α > 0), the
transmission minima are located where

cos β = −cosh(α�)

2
. (10)

Taking this into account, the group delay at the transmission
minima according to Eq. (9) will be

τg

τp

= 1 − �

L
coth(α�). (11)

As the coth function is always positive for positive argument
values, τg/τp is always smaller than 1 and, consequently,
the system will never sustain subluminal regime. However,
tunneling and superluminal regimes can arise at the minima
by properly choosing the interferometer effective length for a
given attenuation coefficient.

In order to go into more detail, we consider small values of
α�, for which the transmission minima can be taken to lie at

β0
1,2 (defined in Sec. II A 1) and Eq. (11) can be approximated

by:

τg

τp

≈
(

1 − 1

αL

)
. (12)

The interferometer will therefore sustain tunneling at the
minima (τg < 0) if the effective length is chosen so that

αL < 1, (13)

whereas superluminal regime is possible at the minima
(0 < τg < L/c) if the effective length satisfies the condition

1 < αL <
n

n − 1
, (14)

where n is the real part of the medium’s refractive index. Two
interesting points should be remarked. First, Eqs. (13) and (14)
are restrictions on the values of the system’s total attenuation.
Hence, a proper change in the attenuation range (either by
changing α and/or the interferometer’s effective length L)
could change the propagation regime at the transmission
minima. Second, the former conditions do not depend on �;
the only role of � being that of determining the location of the
minima.

The behavior discussed above is illustrated by numerical
simulations on an interferometer with refractive index n = 1.5.
Figure 2 shows the transmission coefficient magnitude calcu-
lated using Eq. (7a) and the group delay obtained from Eq. (9),
for two attenuation values and � = L/2. The transmission
curve |t | displays the typical three-beam interference pattern,
with principal peaks at β = 2πm (m is the order of the peak)
and two minima located in between [30]. In agreement with our
previous discussion, no abnormal propagation regimes occur
in the lossless interferometer, while in the case of losses with
α� = 0.01, tunneling appears around the two minima and
negative group delays of almost −50τp can be reached.

The evolution of the pulse propagation regime at the
minima, as a function of the total system’s attenuation αL

is described in Fig. 3. We consider α� = 0.01and the τg curve
obtained from Eq. (11) is plotted together with the straight line
corresponding to the propagation phase delay through vacuum
(L/c). Since the medium’s refractive index is 1.5, L/c =
τp/1.5. As we can see, for small enough attenuation (αL < 1)
the system exhibits tunneling, in agreement with Eq. (13).
For values of αL ranging between 1 and 3, superluminal
propagation is sustained, in agreement with Eq. (14), and the
system presents normal dispersion if αL > 3. Hence, the total
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(a)

(b)

FIG. 2. (a) Transmission coefficient magnitude and (b) group
delay Eq. (9) in units of the phase delay through the medium of
a three-beam interferometer with length difference between adjacent
arms � = L/2, length detuning ξ = 0, and refractive index n = 1.5,
for two values of the attenuation coefficient α.

attenuation in the system determines the pulse propagation
regime. Fast light is achieved with small enough attenuation
while it disappears if it is either too high (αL > n

n−1 ) or zero.

B. Interferometer with detuning (ξ �= 0)

We now consider the case where a small length detuning
(ξ � 1) is introduced in the first branch of the interferometer.
If α� and |ξ | are small, it can be shown that the transmission
minima move with ξ according to

β1,2 ≈ β0
1,2

(
1 + ξ

2

)
, (15)

FIG. 3. Pulse propagation regimes at the transmission minima
of a lossy three-beam interferometer without detuning (ξ = 0) as a
function of the total system’s attenuation αL. Group delay plotted
from Eq. (11) (solid line) and phase delay through vacuum (dashed
line). The delays are given in units of the phase delay through the
medium.

where β0
1,2 corresponds to the first and second minima when

ξ = 0 and α = 0.

1. Lossless media (α = 0)

In a lossless medium, following Eq. (9), the group delay at
the first and second transmission minima can be approximated
by

τg1

τp

≈ 1 − �

L

2
√

3

ξβ0
1

, (16a)

τg2

τp

≈ 1 + �

L

2
√

3

ξβ0
2

, (16b)

respectively. Consequently, by setting ξ �= 0, one can always
obtain slow light at one of the minima. More specifically, these
are the possible cases:

(i) If ξ < 0, the system sustains slow light at the 1st
minimum. At the 2nd minimum, the possible pulse propagation
regime is tunneling if

L < −2
√

3

β0
2ξ

�, (17)

and superluminal (0 < τg < Leff/c) if

−2
√

3

β0
2ξ

� < L < −
(

n

n − 1

)
2
√

3

β0
2ξ

�. (18)

Otherwise, only normal propagation will be possible at the
2nd minimum.

(ii) If ξ > 0, slow light occurs at the 2nd minimum, whereas
at the 1st minimum, the system will sustain tunneling if

L <
2
√

3

β0
1ξ

�, (19)

and superluminal propagation if

2
√

3

β0
1ξ

� < L <

(
n

n − 1

)
2
√

3

β0
1ξ

�. (20)

Otherwise, only normal propagation occurs at the 1st
minimum. The above expressions set restrictions on the length
L of the second branch, which is very close, but not equal, to
the system’s effective length [see Eq. (5)].

This behavior is observed in Fig. 4, for a three-arm
interferometer, where its first branch has been increased or
decreased according to ξ = ±5%. Exact Eq. (9) was used to
simulate the group delay as a function of β in a system with
� = L/2 and refractive index n = 1.5. The transmission’s
minima shift with ξ is manifest in the group delay curves.
According to the approximation in Eq. (16), for a detuning of
+5%, the group delay should be −15.5τp and 9.3τp at the first
and second minima of zero-order, respectively. Whereas, if
ξ = −5%, the expected group delay at the zero-order first and
second minimum is 17.5τp and −7.3τp, respectively. These
approximate values of the group delay at the minima are in
excellent agreement with the exact results shown in the figure.
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(a)

(b)

FIG. 4. (a) Transmission coefficient magnitude and (b) group
delay of a lossless three-beam interferometer with nominal length
difference between adjacent arms � = L/2 and refractive index
n = 1.5, for two values of length detuning ξ .

2. Lossy media (α > 0)

In the most general case, where both detuning and a certain
attenuation level are considered, and under the conditions
of small α� and |ξ |, Eq. (9) can be approximated at the
transmission minima as

τg1

τp

≈ 1 − �

L

2
√

3

β0
1 (ξ − ξc1)

, (21a)

τg2

τp

≈ 1 + �

L

2
√

3

β0
2 (ξ − ξc2)

, (21b)

where the critical detuning lengths ξc1 and ξc2 are approxi-
mately

ξc1 = −2
√

3α�

β0
1

, (22a)

ξc2 = +2
√

3α�

β0
2

. (22b)

For lossless media, ξc1 = ξc2 = 0 and Eqs. (21) reduce
to Eqs. (16); thus, recovering the situation discussed in
Sec. II B 1. The role of the attenuation is then to increase the
magnitude of the critical detuning needed to obtain slow light
at the minima. Table I summarizes the possible propagation
regimes at both minima. If ξ < ξc1, the system only sustains

TABLE II. Possible propagation regimes at the 1st transmission
minimum.

Condition L < Lt1 Lt1 < L < ( n

n−1 )Lt1 L > ( n

n−1 )Lt1

ξ < ξc1 Slow Slow Slow
ξ > ξc1 Tunnel. Superlum. Normal

slow light at the 1st minimum. If ξ > ξc2, the system only
sustains slow light at the 2nd minimum. For ξc1 < ξ < ξc2

the allowed pulse propagation regimes at the minima can be
tunneling, superluminal, or normal, depending on the length
L. Table II summarizes the possible propagation regimes at
the 1st minimum. If ξ > ξc1, there is a maximum value of L

to obtain tunneling at the 1st minimum:

Lt1 =
(

α + β0
1ξ

2
√

3�

)−1

. (23)

For lengths L greater than Lt 1 and smaller than ( n
n−1 )Lt1,

superluminal propagation is sustained at the 1st minimum.
Finally, when L exceeds the value ( n

n−1 )Lt1, the normal regime
is attained.

Similarly, the possible propagation regimes at the 2nd
minimum are shown in Table III. For ξ < ξc2, there is a
maximum value of L to get tunneling at the 2nd minimum:

Lt2 =
(

α − β0
2ξ

2
√

3�

)−1

. (24)

For lengths greater than Lt 2 and smaller than ( n
n−1 )Lt2,

superluminal propagation occurs at the 2nd minimum. Once
again, when L exceeds the value ( n

n−1 )Lt2 the normal regime
is attained. In the case ξ = 0, lengths Lt1 = Lt2 = 1/α,
and Eqs. (13) and (14), for a lossy interferometer with a
constant length difference � between adjacent branches, are
recovered. Let us remark that, as opposed to that case, � does
now influence the conditions that determine the propagation
regime.

We have checked the validity of the approximated Eqs. (21)
and (22) for estimating the group delay at the transmission
minima. The approximated value has been compared with
the exact result obtained from Eq. (9), as a function of
the detuning ξ and for an attenuation level of α� = 0.01.
The results in Fig. 5 reveal the following features: (i) the
agreement between the approximated and the exact value of
τg is excellent for ξ up to ±5%; (ii) the group delay increases
in magnitude as the detuning approaches the critical value;
and (iii) the SFL transition when reaching the critical detuning
is extremely abrupt. Namely, the absolute value of τg at each
minimum approaches infinity when the length detuning equals
exactly the corresponding ξc. This behavior is understood from

TABLE I. Possible propagation regimes at the transmission minima.

Condition Regime at 1st min Regime at 2nd min

ξ < ξc1 Slow Tunnel., Superlum., and Normal
ξc1 < ξ < ξc2 Tunnel., Superlum., and Normal Tunnel., Superlum., and Normal
ξ > ξc2 Tunnel., Superlum., and Normal Slow
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TABLE III. Possible propagation regimes at the 2nd transmission
minimum.

Condition L < Lt2 Lt2 < L < ( n

n−1 )Lt2 L > ( n

n−1 )Lt2

ξ < ξc2 Tunnel. Superlum. Normal
ξ > ξc2 Slow Slow Slow

Eqs. (6)–(8): for a given α� value, the critical detuning is the
one that makes Re2 + Im2 = 0 at the corresponding minimum.
Therefore, this abrupt SFL transition is achieved through a
passage from a zero transmission condition. We would like to
draw attention here to the similarity of this mechanism with
that reported by Longhi in active fiber Bragg gratings with
asymmetric profile [17]. In that work, an abrupt superluminal
to subluminal transition of reflected pulses near to a local
minimum of the reflection spectrum is achieved by increasing
the gain level.

III. EXPERIMENTAL TECHNIQUES

In this section, the experimental setup we have used
for our proof-of-model experiment is described. We have
designed a nominal interferometer consisting of a 1 × 3 RF
power splitter, a 3 × 1 RF coupler (both PE2002, Pasternack),
and three coaxial cables (50 �, RG-58C/U). The designed
effective length of the system is 2 m and the intended length
difference between adjacent cables is 1 m. In practice, every
branch of the interferometer comprises the cable itself, the
connectors between cable and splitters, and a small track inside
the splitters. After measuring all these elements, the actual
branch lengths of the starting interferometer were found to
be L1 = 1.049 m, L2 = 2.066 m, and L3 = 3.088 m, yielding
� = 1.022 m, and ξ = +0.5%, according to our definitions
in Eq. (4). In addition, four coaxial cables were prepared
to substitute the L1 cable of the starting interferometer. The
actual first arm lengths are 0.989, 1.008, 1.086, and 1.103 m.
Therefore, we have five interferometers to be characterized in
frequency and time domain, each with � = 1.022 m, and a set
of values for ξ of −5.4%, −3.5%, +0.5%, +4.1%, and +5.8%.

FIG. 5. Dependence with length detuning of the group delay at
the minima for a three-beam interferometer with nominal length
difference between adjacent arms � = L/2 and attenuation α� =
0.01. The approach in Eqs. (21) (line) is compared to the exact result
of Eq. (9) (symbols) for each minima.

TABLE IV. Fabricated three-beam RF interferometers with L =
2.066 m, � = 1.022 m.

Interferometer L1 (m) ξ (%)

L1-99 0.989 −5.4
L1-101 1.008 −3.5
L1-105 1.049 +0.5
L1-109 1.086 +4.1
L1-110 1.103 +5.8

This set of ξ values allows checking the evolution from fast to
slow light at the minima as L1 varies. All the cables available
for the branches were cut out of the same long coaxial cable
whose attenuation coefficient as a function of frequency, α(ω),
had been previously determined following the procedure in
Ref. [30]. Knowing the system’s attenuation was necessary in
order to estimate the critical length detuning through Eq. (22)
so that we could prepare the cables with adequate values of
ξ to display the SFL transition. From the characterization
of α(ω) we obtained an attenuation of α = 0.015 Np/m
(0.13 dB/m) at 65.2 MHz (first transmission minimum of the
nominal interferometer) and α = 0.022 Np/m (0.19 dB/m)
at 130.4 MHz (second transmission minimum of the nominal
interferometer). These attenuation values yield a critical length
detuning of ξc1 = −2.5% and ξc2 = +1.9% for the first and
second minimum, respectively. The characteristics of the
fabricated RF three-beam interferometers are summarized in
Table IV.

The frequency characterization of these interferometers
has been performed by means of a two-port vector network
analyzer (PNA series, Agilent E8363B). The scattering pa-
rameter S21 (the transmission coefficient) was recorded in
the 10–200 MHz range every 59.375 kHz with an average
of 64 to help suppress the random noise. In addition, a
full characterization of the splitters was carried out. We use
this measurement to correct the interferometer experimental
response for a proper comparison with simulation, which does
not include the effect of the splitters. It was shown that both
splitters directly interconnected introduce an overall group
delay of 1.8 ns and an attenuation of 1 dB, approximately, in
the transmission response.

The experimental data contain a small amount of noise,
which is not very apparent in the S21 parameter itself. To
obtain the experimental group delay, the phase data curve is
differentiated and this amplifies the noise leading to spurious
effects. For this reason, the network analyzer was configured
to smooth the group delay by averaging 17 adjacent points.
Although it is well known that smoothing may give results
which vary critically with the smoothing parameters, the
selected averaging algorithm preserves the key features of the
group delay at the transmission minima.

Additionally, time-domain pulse propagation experiments
have been performed on each interferometer. The experimental
set-up is shown in Fig. 6. The 300 kHz sinusoidal output
of generator-1 (Tektronix CFG-253) is used to amplitude
modulate the sinusoidal signal of generator-2 (IntraAction
VFE-604A4), whose frequency can be varied between 40 and
80 MHz. Therefore, only the first minimum can be observed.
This produces a train of 3.3-μs-wide sinusoidally modulated
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FIG. 6. Experimental set-up for the time-domain pulse propa-
gation measurements through the RF interferometers. The output
sinusoidal signal from generator-2 is 100% amplitude modulated by
the output signal from generator-1. C1 and C2 are 50 � coaxial cables
constituting the reference path (see text).

wave packets with carrier frequencies in the MHz range. The
pulse train transmitted through the interferometer is recorded
at the oscilloscope (Agilent DSO-6032A) with a resolution
of 0.5 ns (10 kSamples/5000 ns). The TTL signal from
generator-1 is used to trigger the oscilloscope.

The group delay for each C1-interferometer-C2 system (see
Fig. 6) was estimated by the following procedure: first, a
capture of the transmitted pulses was taken for a carrier fre-
quency coinciding with the interferometer’s 1st transmission
minimum. Next, the interferometer was removed and cable
C1 was connected to cable C2, and captures of transmitted
pulses through this reference assembly were performed at the
same carrier frequency than before. For each interferometer,
the group delay is then estimated as the time shift between the
peak of the pulse transmitted by the system and the peak of the
pulse traveling through the reference path. Let us recall that
the group delay estimated in this way will approach to the one
retrieved from Eq. (8) as the modulation frequency decreases.

IV. RESULTS AND DISCUSSION

This section discusses the experimental results obtained
for the fabricated RF interferometers described in Sec. III.
Frequency and time-domain measurements were performed on
these systems. The results are compared with the theoretical
model developed in Sec. II. A design of such a device in the
optical range is also proposed and discussed.

A. Results in the frequency domain

Figures 7 and 8 show the transmission (magnitude |t |
and phase φt ) and group delay (τg) of our five three-beam
RF interferometers whose parameters are summarized in
Table IV. Experimental and simulation results are shown.
Namely, we include two experimental curves. One corresponds
to the whole system measured with the vector network
analyzer (labeled uncorrected experimental data)—including
the splitters—while the other (labeled corrected experimental
data) is the result of subtracting the effect of the splitters
in the way indicated in Sec. III. For each interferometer, the
simulated |t | and φt curves were obtained as in Ref. [30], by
numerically calculating the interference of three sinusoidal RF

FIG. 7. Numerical simulation (solid curve) and experimental
frequency-domain characterization of the starting interferometer
L1-105. The dashed curve corresponds to the whole system measured
with the vector network analyzer—including the splitters—and the
symbols refer to the result of subtracting the effect of the splitters
in the way indicated in Sec. III. (a) Magnitude of the transmission
coefficient, (b) phase of the transmission coefficient, and (c) 17-point
averaged group delay.

waves propagating through coaxial cables of the lengths given
in Table IV, including the frequency-dependent attenuation
in the cables. The τg curves were obtained by differentiating
the corresponding numerical phase curve with respect to the
frequency. The same 17-point smoothing algorithm as that
applied to the measured τg curve was used for the simulated
group delay. The agreement between simulations and the
corrected experimental results is very good, thus assessing
the accuracy of the procedure employed to subtract the effect
of the splitters. From the figures, it is obvious that the splitters
introduce losses (the peaks in transmission are less pronounced
for the raw data) and also they add an additional phase (the raw
data phase function is above the numerical one). Their effect
on the group delay is hardly noticeable; for this reason only
the corrected experimental τg curve is shown in the figures.

Let us first analyze the situation for the starting interferome-
ter L1–105, which is displayed in Fig. 7. The |t | curves exhibit
absolute maxima every 200 MHz and two minima between
the zero and the first-order principal peak that lie close to the
expected positions f01 = 65.4 MHz and f02 = 130.8 MHz [see
Eq. (15)]. Negative group delay around −400 ns are reached
at both minima, accordingly to the steep negative slope of
the phase function at these frequencies. These results agree
with our model predictions, since the interferometer’s length
detuning (+0.5%) satisfies the condition ξc1 < ξ < ξc2 (with
ξc1 = −2.5%, and ξc2 = +1.9%), and the length of the second
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(a) (b)

(c) (d)

FIG. 8. Numerical simulations (solid curve), uncorrected (dashed curve), and corrected (symbols) experimental results for the frequency-
domain characterization of three-beam RF interferometers. Top panel shows magnitude of the transmission coefficient, middle panel shows
phase of the transmission coefficient, and bottom panel shows the 17-point averaged group delay for samples (a) L1-99, (b) L1-101, (c) L1-109,
and (d) L1-110.

branch (L = 2.066 m) is well below the limiting values (Lt 1 =
55.7 m and Lt 2 = 62.2 m) above which tunneling regime
disappears.

Figure 8 shows how the situation changes when the
interferometer’s length is slightly changed. According to
theory, a reduction of at least 2.5%� in branch length L1

fulfills the condition to generate slow light at the 1st minimum.
On the contrary, an increase of at least 1.9%� would generate

slow light at the 2nd minimum. Figures 8(a)–8(d) correspond
to samples L1-99, L1-101, L1-109, and L1-110, respectively.
In the two samples with shorter L1, the system exhibits positive
τg at the 1st minimum, while negative τg is retained at the 2nd
minimum. The opposite situation occurs for samples L1-109
and L1-110. These results are justified within our model,
considering the length detuning ξ of each sample (Table IV),
the critical detuning lengths (ξc1, ξc2), and the model conditions
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summarized in Tables II and III. Namely, ξ < ξc1 = −2.5%
for the system in Figs. 8(a) and 8(b) and ξ > ξc2 = +1.9%
for the system in Figs. 7(c) and 7(d), which explains the
occurring of slow light at the 1st minimum in one case and at
the 2nd minimum in the other. Also, a quick estimation using
Eq. (24) shows that only tunneling can be sustained at the
2nd minimum for interferometers L1-99 and L1-101, since L

(2.066 m) is for both systems smaller than Lt 2 (11.6 m and
15.8 m, respectively). A similar result occurs by using Eq. (23)
to obtain the value of Lt 1 for systems L1-109 and L1-110; we
find L < Lt 1 (25.5 m, and 20.3 m, respectively), and this is
why these samples exhibit tunneling at the 1st minimum.

From Fig. 8, the link between the strength of the group
delay peaks and the steepness in the slope of the phase
function is obvious. Such steepness is ultimately linked to the
attenuation in the system (for higher attenuations the slopes are
less pronounced) and to how much ξ approaches the critical
detuning ξc1 or ξc2. Samples L1-101 and L1-105 are the ones
with ξ closer to one of the critical values, thus leading to the
highest and narrowest τg peaks. Finally, the frequency shift of
the minima as the length detuning varies is evident in Fig. 8.
The minima move toward higher frequency as ξ increases, just
like the theoretical model predicts.

B. Results in the time domain

Pulse propagation experiments were carried out using the
experimental setup described in Sec. III (Fig. 6). The modu-
lating signal was a 300 kHz sinusoidal wave, which results in
a 3.3-μs-wide pulse. This choice of the modulating frequency
was a compromise between narrow-enough bandwidth to avoid
pulse distortion and large-enough bandwidth to get appreciable
pulse peak advancements (or delays) in comparison to the
pulse length. For each interferometer, the carrier frequency
was selected to coincide with the first transmission’s minimum.
Since the signals were largely attenuated, a direct observation
of the pulse peak on the oscilloscope was not accurate enough
to measure the group delay. Hence, the pulse peak position
was obtained from a numerical analysis of the data by finding
the best fit to the pulse envelope.

Figure 9 shows the pulse captures for the five RF in-
terferometers. The arrow indicates the time spent by the
pulse peak in propagating through the interferometers and
it is obtained as explained in Sec. III. The SFL transition
in the pulse propagation regime is evident in these captures.
The τg values agree reasonably well with those found in
the frequency-domain characterization. The pulse propagates
with negative group delay of −302, −147, and −115 ns in
samples L1-105, L1-109, and L1-110, respectively. Whereas
positive group delays of +248 and +308 ns occur in samples
L1-99, and L1-101, respectively. As it is clearly demonstrated
in Refs. [31–33], such peak advancements and delays arise
from the coherent interference of the pulse frequency com-
ponents. Each component travels at phase velocity 2/3c in
the cables, but their relative phases are modified after the
pulse’s transmission through the system; as a result, the peak
of the output pulse (where the frequency components are all in
phase) is shifted backward (or forward) and the pulse appears
to travel at superluminal (or subluminal) speed. As it is argued
in several works [32,33], these abnormal propagation regimes

FIG. 9. Wave-packet traces of the RF interferometers (from top
to bottom) L1-99, L1-101, L1-105, L1-109, and L1-110. In each
case, the pulse carrier frequency is that of the 1st transmission
minimum. The arrow indicates the pulse propagation time through
the interferometer and it is obtained as mentioned in Sec. III.

occur only if the spatial length of the pulse (Lpulse) greatly
exceeds that of the system. This condition is nicely satisfied
here, since Lpulse = 3.3 μs × 2/3c = 400 m is much longer
than the interferometer’s length (Leff ≈ 2 m).

C. Further discussion and operation in the optical range

Let us now discuss some figures of merit of the three-beam
interferometer as an SFL system and its possible realization
for delaying or advancing optical pulses. Considering an
interferometer with a small length detuning, ξ , simulations
show that the relative group delay |τdel| = τg − τp, which is
the difference between the group delay and the phase delay in
the medium over length L, matches a sequence of Lorentzian
functions centered at each transmission minimum:

|τdel| = 1

2π

�
2

(f − fmin)2 + (
�
2

)2 , (25)

where fmin is the frequency of the considered transmission
minimum and � is the full width at half maximum (FWHM)
of the Lorentzian function at that minimum. The maximum
relative group delay is then |τdel|peak = 1/π�. Since the pulse
delay (or advancement) will only be effective for signals cen-
tered at the transmission minima and with spectral components
within these Lorentzian peaks, the product |τdel|peak × � =
1/π ≈ 32% gives a rough estimation of the maximum delay-
bandwidth product that can be achieved with this system. Let
us note that this estimation is valid for any frequency range
the interferometer may operate.

Another figure of merit in SFL systems is the fractional
delay, defined as the ratio between the relative pulse delay, τ ,
and the pulse duration, T0. In our time-domain experiments,
we have measured a maximum relative pulse delay of ∼300 ns
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(τp ∼ 10 ns is almost negligible in comparison). Various mea-
sures of the pulse duration are considered by the authors. For
our sinusoidally modulated wavepackets and by considering
T0 as the period of the modulating signal (3.3 μs), we obtain a
fractional delay of ∼9%. Instead, if we take T0 as the FWHM
of the pulse amplitude signal, this parameter becomes ∼18%.
Furthermore, by regarding T0 as the FWHM of the pulse power
signal, then the measured fractional delay becomes ∼25%. For
the rest of the discussion we will consider this last definition
of T0 since it is the optical power, and not the optical field
envelope, which is detected in experiments performed in the
optical range.

We have also performed numerical simulations on the
propagation of sinusoidally modulated pulses through the
interferometer. This study shows that the transmitted pulse
width, T0t , is smaller than T0, yielding a pulse compression b,
given by b = 1 − T0t /T0. Either pulse delay or advancement
is accompanied by a certain degree of pulse compression.
The relation between pulse compression and fractional delay
is roughly quadratic and for sinusoidally modulated pulses
reads

b ≈ 0.7

( |τ |
T0

)2

. (26)

This means that, in order to maintain the pulse compression
below 5%, the fractional delay cannot exceed 27%, and
to keep it below 10%, the fractional delay cannot exceed
38%. This explains the low pulse compression observed in
our measurements with a 300 kHz modulating signal. Time-
domain measurements with 500 kHz modulation frequency
(not shown here) were carried out to confirm not only a high
pulse compression but also a strong distortion.

The above discussion is entirely applicable to three-arm
interferometers fabricated to operate at optical frequencies.
Leaving the free-space configurations aside, there are several
technologies to realize a wave-guided three-arm interferometer
operating in the optical range, namely, all-fiber and channel
waveguide structures. For practical purposes, it would be
desirable to induce the SFL transitions by changing the optical
path without affecting the physical length of the arms, i.e., by
changing the refractive index. With this idea, lithium niobate
(LN) is an excellent candidate material, being an established
choice for electro-optic applications such as the realization of
Mach-Zehnder optical modulators [34]. Optical waveguides
can be fabricated, among other techniques, by in-diffusion of
Titanium into an x- or z-cut LN crystal. A precise control of the
phase shift in one arm can be achieved by applying an electric
field through the metallic electrode above the corresponding

LiNbO3
splitter

tuoni

drive electrode
waveguidesground electrodes

combiner

FIG. 10. Schematic of a lithium niobate three-arm interferometer.

(a)

(b)

FIG. 11. Numerical simulation of a LN interferometer with the
indicated parameters. (a) Magnitude of the transmission coefficient
and group delay and (b) pulse traces of transmitted pulses with the
indicated carrier frequencies corresponding to different propagation
regimes.

waveguide, which induces a refractive index change due to
the electro-optic properties of this material. Figure 10 shows a
schematic of a z-cut LN unbalanced three-arm interferometer.
Although it seems more adequate to place the drive electrode
above one of the outer arms, the drive electrode has been
placed above the middle arm in order to directly extrapolate
our previous analysis with length detuning ξ . Therefore, an
external voltage applied to the drive electrode will produce a
phase shift, δφ1, in the shortest arm, which is equivalent to
introducing a length detuning of ξ = c

neff 2πf

δφ1

�
, where neff is

the waveguide effective refractive index.
As an example, let us consider the case of a LN inter-

ferometer with L = 5 cm, nominal � of 935 μm, and a
phase shift δφ1 ≈ 0.08π rad (equivalent to a length detuning of
ξ = 3 · 10−5). This value of � is chosen so that the separation
between transmission minima of the same order is 50 GHz.
Figure 11(a) shows the transmission coefficient and the group
delay in a frequency range of 150 GHz centered at the middle
frequency between a pair of minima of the same order at
∼193 THz. Considering neff = 2.14, the phase delay in this
system is τp ≈ 356 ps. Fast light regime is sustained at the
first transmission minimum, whereas slow light appears at
the second minimum. As indicated in the figure, pulses of
bandwidth smaller than 3.4 and 3.2 GHz would be required to
observe such peak advancement or delay, respectively. We have
simulated the propagation of an optical pulse train through this
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interferometer. An optical carrier of ∼193 THz (λ = 1.55 μm)
is sinusoidally modulated in order to produce a train of pulses
with T0 = 214 ps at a repetition rate of 1.7 GHz. Figure 11(b)
shows the pulse traces corresponding to propagation at both
transmission minima together with a pulse trace propagating
at the central frequency, for which the group delay is τp.
The relative pulse delays at the first and second minima are
∼−72 ps and +76 ps, respectively, yielding fractional delays
of −34% and +36%, with pulse compression of 8% and 9%,
respectively. These values are larger than those reported in
passive fiber Bragg gratings [16], where fractional delays
and advancements of 17% where measured when tuning a
picosecond optical pulse spectrum through the grating band
gap. Our results are also similar to the ones reported in
Ref. [17] for active fiber Bragg gratings when keeping the
pulse compression in our system below 13%.

V. CONCLUSIONS

To summarize, we have demonstrated the arising of slow
and fast light in linear and passive three-beam interferometers
for frequencies close to the transmission minima. Transitions
in the pulse propagation regime at these frequencies in terms of
the system’s characteristics (attenuation and length difference
between adjacent arms) were theoretically analyzed. We
have proved that slow light is not possible when the length
difference between adjacent arms is a constant. In this case,
fast light is achieved only if the system has attenuation.
The total attenuation drives the group delay transitions at
the transmission minima, where tunneling is the expected
regime for low total attenuation, whereas superluminality and
eventually normal propagation are attained as total attenuation
further increases.

By introducing a small length detuning (ξ ) in a branch,
we have demonstrated that slow light can arise. Analytical
expressions for the group delay τg at the transmission minima
in the approximation of low attenuation and small length
detuning were derived, and a critical length detuning (ξc)
beyond which slow light appears was obtained. We found that
in the case of lossless media ξc is zero, being the role of the
attenuation to increase the magnitude of ξc. For every pair of
minima located between absolute peaks of the transmission
spectra, only one minimum may support slow light at a time,
whereas the other minimum will sustain either tunneling,
superluminal, or normal dispersion, depending on the system’s
length.

Let us remark that such length-detuning-driven SFL transi-
tion stems from a structural change in the system’s dispersive
properties at the transmission minima. This change is triggered
by the passage through a local zero transmission when the
critical detuning value is reached. This is in formal analogy to
previously reported group delay tuning mechanism for pulses
reflected on active Bragg gratings by changing the gain. But
unlike it, here the SFL transition is attained in an entirely
passive system.

An experimental demonstration of the model predictions on
the pulse propagation regimes has been performed in the RF
range by using 50-� coaxial cables and 1 × 3 power splitters to
build five interferometers with ξ values ranging from −5.4 to
+5.8%. The structures were characterized in the frequency
domain, and the group delay at the transmission minima
showed the trends predicted by the analytical expressions. The
same structures were used in a time-domain setup, where a
group delay from less than −300 ns to more than +300 ns was
measured for a train of 3.3-μs-wide sinusoidally modulated
wavepacket with carrier frequency at the first minimum of
each interferometer.

The maximum delay-bandwidth product of the system
is estimated to be 32%. Numerical simulations on pulse
propagation show that the achievable fractional group delays
can reach 38% keeping pulse compression below 10%. These
characteristics are intrinsic to the system; i.e., they are
independent of its operational frequency range. Therefore,
the achievable pulse advancements or delays for small pulse
compression are shorter than the pulse duration. This would
be a drawback for developing practical delay lines or optical
buffers based on this system for signal processing. However,
the very abrupt SFL transition when approaching the critical
length detuning opens the door for sensing applications. With
this sensing scope, let us note that similar phenomena would be
expected by varying whatever changes the optical path in one
of the arms. As an example, a lithium niobate interferometer
operative at 1.55 μm was proposed where a fine control of
the phase shift in a branch could be achieved by applying an
electric field through a metallic electrode, which induces a
refractive index change on the waveguide.
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