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We present a geometrical analysis on the Poincaré sphere of the complex (amplitude and phase) response of
polarization modulation systems. The proposed method can be applied to analyze non-cyclic polarization
changes and, in particular, the phase is evaluated through the geometric Pancharatnam–Berry phase and
the Pancharatnam connection between the initial and the final state. The method can be very useful to ana-
lyze and intuitively understand the complex modulation mechanism in polarization modulation devices such
as liquid crystal displays.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In 1956 Pancharatnam [1] defined the idea of relative phase between
two polarization states, and established a criterion for which two differ-
ent polarization states are in phase, the so-called Pancharatnam connec-
tion. These important results went unnoticed until Berry related the
Pancharatnam geometric phase and the geometric phase of slowly
varying (adiabatic) cyclic quantum systems for 1/2 spin particles [2].
Since then, the phase gained when a sequence of transformations are
performed onto the state of polarization along a closed loop of geodesic
arcs (parallel transport) on the Poincaré sphere, the so-called geometric
Pancharatnam–Berry phase, has been extensively analyzed [3–5] and
applied for the design of systems tomanipulate the state of polarization
[6,7].

However, in some important practical systems, the polarization
transformations either follow non-geodesic trajectories (this is in
general the case when traversing wave plates), or non-closed loops
on the Poincaré sphere. The first situation has been usually solved
by decomposing the total phase gain into a geometrical part (half
the area limited by the closed trajectory on the sphere) and a dynam-
ical phase term [8,9], which can be regarded as a phase term with no
shape identification on the sphere. However, a methodology to
-Fuentes).
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geometrically derive the overall phase gained by the light beam in
closed loops that include traversing wave plates was developed by
Courtial in ref [10]. Recently, the methodology of Courtial has been
revisited by Kurzynowski et al. [11] and also independently derived
by Gutierrez-Vega [12]. Van Dijk et al. also proposed a methodology
to geometrically evaluate the phase of non-closed loop polarization
transformations [13,14].

All these works show the usefulness of developing geometrical
methods based on the Poincaré sphere representation to evaluate
the phase gained by a light beam traversing polarization optical sys-
tems. This can be especially useful to analyze the complex (amplitude
and phase) modulation in polarization optoelectronic modulators, in-
cluding devices like liquid-crystal, electro-optic or elasto-optic modu-
lators. All these devices can be considered in general as elliptical wave
plates, i.e., a waveplate whose eigenvectors are elliptical states in-
stead of linear ones. In such devices one or more physical parameters
(the phase shift and / or its eigenvectors) can be modulated through
an applied voltage. For instance, parallel aligned liquid crystal devices
(PAL-LCD) show a voltage dependence of the eigenphases, while they
maintain fixed eigenvectors [15]. Ferroelectric liquid crystal devices
(FLCD), on the contrary, respond to a binary bipolar voltage with a
variation in the orientation of the eigenstates, while they maintain
fixed eigenphases [16]. The most common device, the twisted nemat-
ic liquid crystal display (TN-LCD), presents variations with voltage in
both the eigenphases and the eigenstates [17,18].
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In all cases, the modulator is typically illuminated with a specific el-
liptical polarization. If the devices are pixelated, they can be employed
to create non-uniform polarization light beams [19]. Nevertheless, in
general, the light emerging from the modulator is projected onto an el-
liptical analyzer, i.e., a polarizer whose transmission state is an elliptical
state, which is commonly made of a quarter wave plate followed by a
linear polarizer, to produce a desired complex modulation (typically a
phase only modulation) [20]. The configuration of these external polar-
ization elements (polarizers and fixed wave plates) determines the
complex modulation produced as a function of the applied voltage.
For instance, the range of the phase modulation can be dramatically in-
creased in TN-LCDwhen a proper elliptical polarization configuration is
selected [17]. Usually, the identification of the overall amplitude and
phase modulation is performed using the Jones theory. However, al-
though the Poincaré sphere has been employed to analyze the polariza-
tion transformations upon modulation [16,18,20], the geometrical
Pancharatnam–Berry approach has not been applied to understand, an-
alyze or predict the mechanisms involved in phase modulation of such
modulators.

In this work we present a procedure to describe the complex mod-
ulation achieved by polarization modulators based on the application
of the geometrical phase approach. For that purpose, we geometrical-
ly analyze the two polarization transformations produced on such
systems: 1) the transformation induced by the modulator, which re-
quires accounting for the geometrical Pancharatnam–Berry phase,
for the dynamical phase, but also for an additional phase term account-
ing for the non-closed loop among the initial state and the state emerging
from the modulator, and 2) the projection onto the state transmitted by
the final elliptical analyzer, for which the Pancharatnam connection can
be directly applied. In order to analyze such transformations we apply
specific simple spherical quadrangles defined on the Poincaré sphere,
which can be applied to evaluate both types of transformation.

For that purpose, in Section 2we review the Pancharatman's connec-
tion to project one polarization state onto another, and we develop a
simple spherical quadrangle to geometrically visualize the correspond-
ing phase gain. Then, in Section 3 we analyze the phase gain when the
light beam traverses a general elliptical wave plate, creating a non-
closed loop, and we show that an additional Pancharatman connection
phase term must be added to the usual dynamical and geometrical
phase terms employed when closed loops are considered. In Section 4
we present how to combine both situations (passage through a general
elliptical wave plate, and projection of the emerging state onto an arbi-
trary elliptical analyzer), and we derive geometrical shapes that permit
to geometrically evaluate the overall complex modulation. Finally, in
Section 5 we introduce the application of this method to evaluate the
modulation produced by a parallel aligned nematic liquid crystal display
in various polarization configurations. Experimental results that verify
the presented results are included.

2. Pancharatnam connection through spherical quadrangles

A natural way to represent any polarization state, directly related to
the Poincaré sphere, is the azimuth–ellipticity notation. A unitary polar-
ization state |e〉≡ |θ,ε〉, defined by its azimuth (θ) and ellipticity (ε) an-
gles, can be expressed in terms of the corresponding Jones vector as:

e〉 ¼j jθ; ε〉 ¼ R −θð Þ cos εð Þ
i sin εð Þ
� �

; ð1Þ

where R is the 2×2 rotation matrix

R θð Þ ¼ cos θð Þ sin θð Þ
− sin θð Þ cos θð Þ
� �

: ð2Þ
The corresponding unitary Stokes vector is expressed as:

S θ; εð Þ ¼
cos 2εð Þ cos 2θð Þ
cos 2εð Þ sin 2θð Þ

sin 2εð Þ

2
4

3
5; ð3Þ

which directly defines the polarization state coordinates on the Poin-
caré sphere, being (2θ, 2ε) the longitude and latitude angles.

Next, let us consider the projection pab of a state |a〉=|θa,εa〉 onto a
state |b〉=|θb,εb〉, both being unitary states described by a Jones vector
in the form of Eq. (1), i.e., without additional external phases. The result
of this projection can be written as the polarization state |B〉=|b〉〈b|a〉,
where the scalar term pab=〈b|a〉 can be calculated as:

pab ¼ cos θa−θbð Þ cos εa−εbð Þ þ i sin θa−θbð Þ sin εa þ εbð Þ
¼ cos

γab

2

� �
exp iφabð Þ ð4Þ

where θa/b and εa/b denote the corresponding azimuth and ellipticity an-
gles, and γab, φab are angular magnitudes which define the amplitude
and the phase for this projection. The intensity of the projection is
given by:

iab ¼ 〈bj ja〉j2 ¼ cos2
γab

2

� �
¼ 1

2
1þ Sa·Sbð Þ; ð5Þ

being Sa and Sb the Stokes vectors corresponding to |a〉 and |b〉. From
this expression, γab gets its meaning as the great arc on the Poin-
caré sphere joining states |a〉 and |b〉. The phase φab=arg{pab},
i.e., their Pancharatnam connection, can be directly derived from
Eqs. (4)–(5) to be

φab ¼ arctan tan θa−θbð Þ sin εa þ εbð Þ
cos εa−εbð Þ

� �
: ð6Þ

This shows that, for the chosen representation of the polarization
states (Eq. (1)), only those states having either the same azimuth or
opposite ellipticity will be in phase to each other.

According to the geometric phase concept, the phase gained in a
closed loop along geodesic arcs (parallel transport) is given by half the
solid angle defined by the closed trajectory. Therefore, a construction
like that in Fig. 1(a) can be done, where an spherical quadrangle is de-
fined by the states |a〉, |b〉, and two other linear states |a '〉=|θa,0〉 and
|b '〉=|θb,0〉 with the same azimuth as |a〉 and |b〉, respectively. The
closed trajectory |a〉→|b〉→|b '〉→|a '〉→|a〉 along geodesic arcs defines
a solid angle Ωab≡Ωabb 'a '. Arcs |b〉→|b '〉 and |a '〉→|a〉 correspond to
transformations without change in the azimuth, and arc |b '〉→|a '〉 cor-
responds to a transformation with zero ellipticity. Thus, according to
Eq. (6), they do not introduce any phase upon projection. Having into
account Pancharatnam–Berry theory, it is directly concluded that the
phase φab must coincide with minus half the solid angle Ωab of the
spherical quadrangle defined in Fig. 1(a). Thus, the projection pab can
be written as

pab ¼ 〈bja〉 ¼ cos
γab

2

� �
exp −i

Ωab

2

� �
: ð7Þ

The following sign criteria for Ωab can be directly concluded from
Eq. (6): if the sequence |a〉→|b〉→|b '〉→|a '〉→|a〉 is followed counter-
clockwise, then Ωab is positive; if this sequence is followed clockwise,
then Ωab is negative. Also note that the projection in opposite sense
has opposite sign solid angle, i.e., Ωba=−Ωab.

If the two states lie in opposite hemispheres of the Poincaré
sphere, the above spherical quadrangle degenerates into two spheri-
cal triangles, as shown in Fig. 1(b). Now, the solid angle Ωab can be
viewed as the sum of the two angles Ωaca' and Ωbb'c corresponding
to the two triangles in Fig. 1(b), being |c〉 the state obtained by the in-
tersection between the great circle joining |a〉 and |b〉, and the



a b

c

Fig. 1. (a) Spherical quadrangle Ωab to calculate the projection 〈b|a〉. (b) Two equivalent spherical triangles to calculate 〈b|a〉when |a〉 and |b〉 lie in opposite hemispheres. (c) Spher-
ical triangle Ωabc and spherical quadrangle Ωac useful to calculate the phase of the non-closed loop of projections 〈c|b〉〈b|a〉.
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equator. The above mentioned sign criteria must be applied to each
triangle separately. Therefore, in the case shown in Fig. 1(b) Ωaca’ is
positive while Ωbb'c is negative.

Finally, let us note that, according to the Pancharatnam–Berry
phase theorem, if the input state |a〉 is first projected onto |b〉, then
onto a third state |c〉, and finally back to the initial state |a〉, the
total gained phase shift is given by minus half the solid angle Ωabc

of the triangle defined by these three states and the geodesic arcs
joining them. Note that this solid angle can be composed by the
sum of the signed solid angles of each projection, each one repre-
sented by a solid spherical quadrangle as Ωabc=Ωab+Ωbc+Ωca.
Equivalently, if the initial state |a〉 is projected onto the final state |
c〉 through an intermediate state |b〉, therefore producing a non-
closed loop, the solid angles related to these transformation follow

Ωab þΩbc ¼ Ωabcþ Ωac ð8Þ

Therefore, the phase of non-closed loop of projections |a〉→|b〉→|
c〉 is equal to the Pancharatnam–Berry phase related to the closed
loop |a〉→|b〉→|c〉→|a〉, plus the phase of the Pancharatnam connec-
tion related to the projection |a〉→|c〉. This is illustrated in Fig. 1(c),
where the solid angles Ωabc and Ωac are both negative for this case.
We will make use of this result in the next sections, when dealing
with the transformation through wave plates.

3. Phase gain through a wave plate

We next study how to geometrically analyze the phase gained by
a polarization state |a〉 which traverses an elliptical retarder wave
plate, i.e., a non-absorbing polarization device characterized by a
unitary Jones matrix T, i.e., T†=T−1, being † the transposed
complex-conjugate operator. The matrix of this device can be writ-
ten as:

T ¼ exp iφ1ð Þ 1〉〈1j j þ exp iφ2ð Þj2〉〈2j; ð9Þ

where |1〉 and |2〉 denote the two eigenvectors or neutral axes of the
wave plate (those polarization states which pass through the wave
plate unaltered except for its eigenphase exponential term). Apart
from this, φ1 and φ2 are the corresponding eigenphases. This pre-
vious equation can be written in terms of the mean phase shift
2φ ¼ φ2 þ φ1ð Þ ¼ arg det Tð Þð Þ and the retardance 2ω=(φ2−φ1) as

T ¼ exp iφð Þ exp −iωð Þ 1〉〈1j j þ exp þiωð Þf j2〉〈2jg ð10Þ

The phase shift φ corresponds to the mean phase component ac-
quired when a light beam traverses the wave plate, while the matrix
inside the braces in Eq. (10) corresponds to a SU(2) group transfor-
mation [3], i.e. a 2×2 unitary matrix with a determinant equal to
one.

It is very well known that the action of a retarder on the Poincaré
sphere is to produce a rotation of 2ω around the axis defined by its
eigenstates |1〉 and |2〉. This is illustrated in Fig. 2(a), where the
input state |a〉 is transformed into the state |B〉=T|a〉. The lune defined
by the states |1〉, |2〉, |a〉 and |B〉 has a solid angle 4ω. According to the
selected sign criteria, ω is positive if the rotation seen from axis |1〉 is
counterclockwise.

The trajectory corresponding to the transformation induced by
the wave plate (black solid line in Fig. 2(a)) is a non-geodesic
opened arc. Therefore |B〉 is not in phase with |a〉. Thus, it must be
expressed as |B〉=exp(iφT : a→ b)|b〉, where now |b〉 takes the form
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Fig. 2. (a) Rotation in the Poincaré sphere induced by an elliptical wave plate with eigenvectors |1〉 and |2〉 and retardance 2ω. (b, c) Alternative spherical shapes useful to geomet-
rically calculate the phase gain φT :a→b: (b) Spherical triangle Ωa1b and spherical quadrangle Ωab(this construction requires adding the eigenphase ϕ1 of the selected eigenvector;
Eq. (13)), (c) Spherical quadrangles Ωaabb and Ωab(this construction requires adding the average eigenphase φ; Eq. (14)).
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of Eq. (1). Following Courtial [9], this phase can be calculated by
projecting the output state |B〉 onto one of the two orthogonal ei-
genvectors. Let us calculate pBn= 〈n|B〉=exp(iφT : a→ b)〈n|b〉 with |
n〉, n=1,2, the two wave plate eigenvectors. By direct application
of Eq. (9) and because the eigenvectors satisfy that T|n〉=exp
(iφn)|n〉, and 〈1|2〉= 〈2|1〉=0, it is directly derived that 〈n|B〉= 〈n|
T|a〉=exp(iφn)〈n|a〉. Joining these two results directly leads to the
following expression

exp iφT:a→bð Þ ¼ exp iφ1ð Þ 〈1ja〉
〈1jb〉 ¼ exp iφ2ð Þ〈2ja〉

〈2jb〉 ð11Þ

Since the transformation of |a〉 into |b〉 by the wave plate keeps the
angle γ to the selected eigenvector state, γan=γbn, the previous equa-
tion can be written using only the phase terms as exp(iφT :a→b)=exp
(iφn)exp(− iΩan/2)exp(+ iΩbn/2), or in other terms

φT:a→b ¼ φ1 þ
Ωb1−Ωa1

2
¼ φ2 þ

Ωb2−Ωa2

2
: ð12Þ

This result implies that the phase φT : a→b, gained by the non-
geodesic circular movement from state |a〉 to |B〉, is equal to the
phase of the considered eigenvector, plus the phase difference be-
tween the projections of the input |a〉 and output |b〉 states onto the
selected eigenvector. Taking into account the decomposition in
Eq. (8), this result can also be written as

φT:a→b ¼ φ1−
Ωa1b

2
−Ωab

2
¼ φ2−

Ωa2b

2
−Ωab

2
ð13Þ

This alternative expression shows that φT :a→b can also be calculat-
ed as the sum of three contributions: 1) the phase ϕn of the considered
eigenvector |n〉, 2) the Pancharatnam–Berry phase corresponding to the
closed loop |a〉→|n〉→|b〉→|a〉, and 3) the phase of the Pancharatnam
connection |a〉→|b〉. Fig. 2(b) shows an example where the first eigen-
vector is considered, and where the spherical triangle defined by states
|a〉, |1〉 and |b〉, with area Ωa1b (negative in this case), and the spherical
quadrangle with areaΩab(also negative in this case) have beenmarked.

If the two previous relations in Eq. (13) are averaged, the phase
φT : a→b can also be calculated as

φT:a→b ¼ φ−
Ωaabb

2
−Ωab

2
; ð14Þ

where Ωaabb ¼ 1
2 Ωa1b þΩa2bð Þ ¼ 2ω−Ωb1a is the solid angle in the

spherical quadrangle defined by states |a〉,|b〉, |ā〉 and jb〉 as shown
in Fig. 2(c). Note that this spherical quadrangle is a portion of half
the lune of angle 2ω defined by states |1〉, |ā〉 and jb〉. Also note that
the great arc passing through |ā〉 and jb〉 defines a great circle,
which is perpendicular to the axis joining the eigenstates |1〉 and |2〉.

Eq. (14) shows that the phase shift φT : a→ b can be split into three
components as φT : a→ b=φD+φG+φPC, where φD ¼ φ is a phase
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component with no geometrical identification (which could be
regarded as a dynamical phase term in this particular decomposi-
tion), while φG ¼ −Ωaabb=2 denotes a geometrical phase term.
Note that these two components have been recently identified in
refs. [10,11]. However, the additional component φPC=−Ωab/2
must be added, corresponding to the Pancharatnam connection
from |a〉 to |b〉. If the loop on the Poincaré sphere is finally closed
by projecting |b〉 back onto |a〉, an additional Pancharatnam connec-
tion phase term φba=arg(〈a|b〉)=−Ωba/2 must be added, which
exactly cancels φPC. This is the case in the typical experiment deal-
ing with the geometrical phase, where the polarization optical sys-
tem is included in one arm of an interferometer, and the phase of
the emerging state is compared to the phase of the initial state [8].
a

e

c

Fig. 3. Spherical shapes useful to geometrically calculate the complex modulation m: (a) Sph
4ω and their difference, (c) spherical quadrangle Ωaapp , (d) spherical quadrangle Ωppbb and
However, the third term in Eq. (14), φPC=−Ωab/2 cannot be ig-
nored in optical modulator systems, where the final state is not pro-
jected in general onto the initial one, and becomes very important
to explain the phase modulation characteristics of the devices.

An additional observation regarding the meaning of Eq. (14) can
be done. It splits the origin of the phase gain into two terms. On one
hand, the mean phaseφ, which has no evident interpretation on the
sphere. On the other hand, the geometrical terms φG ¼ −Ωaabb=2
and φPC=−Ωab/2, which are direct consequence of the SU(2)
transformation previously alluded to in Eq. (10). This verifies that
the phase gain produced by any SU (2) transformation (2×2 uni-
tary matrix with 1 determinant) can be identified by means of
two simple geometrical shapes on the sphere.
b

d

erical triangle Ωa1p and spherical quadrangle Ωap, (b) spherical lunes with areas 4Θ and
(e) spherical triangle Ωabp and spherical quadrangle Ωaabb .
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4. Projection onto a final analyzer

Let us now consider the projection of the state |B〉=T|a〉=exp
(iφTa→b)|b〉 emerging from the modulator onto an arbitrary final el-
liptical analyzer, represented by the state |p〉. This complete process
is visualized in Fig. 3(a), and the final projection leads to an additional
complex modulation term 〈p|b〉=cos(γbp/2)exp(− iΩbp/2). Thus, the
total complex modulation m provided by the modulator is given by

m ¼ 〈pjB〉 ¼ 〈pjTja〉 ¼ mj j exp iΨð Þ
¼ cos

γbp

2

� �
exp i φTa→b−

Ωbp

2

� �� �
: ð15Þ

Taking into account Eqs. (7)-(9), the complex modulation can be
written as

m ¼ exp iφ1ð Þ〈p j1〉〈1ja〉þ exp iφ2ð Þ〈pj2〉〈2ja〉 ¼
¼ c1pca1 exp i φ1−

Ωa1 þΩ1p

2

� �� �

þ c2pca2 exp i φ2−
Ωa2 þΩ2p

2

� �� �
; ð16Þ

where cjk=cos(γjk/2), (j,k=1, 2, a, p), denote the amplitude terms of
the corresponding projections. This expression can be factorized as

m ¼ exp i φ−
Ωa1p þΩa2p þ 2Ωap

4

� �� �
�

(
c1pca1 exp i −ω−

Ωa1p−Ωa2p

4

� �� �

þc2pca2 exp −i −ω−
Ωa1p−Ωa2p

4

� �� �)
;

ð17Þ

where the definitions 2φ ¼ φ2 þ φ1ð Þ and 2ω=(φ2−φ1) have been
previously used, as well as the relations Ωanp+Ωap=Ωan+Ωnp,
n=1,2, derived directly from Eq. (8).

We can now define an angle 2Θ corresponding to the minor angle
of the lune defined by the great arcs joining |1〉 and |2〉 and passing
through |a〉 and |p〉 (Fig. 3(b)). This lune has a solid angle 4Θ. Similar-
ly, the lune described by the action of the waveplate has a minor
angle 2ω and a solid angle 4ω (upper light yellow lune in Fig. 3(b)).
Therefore their subtraction defines a new lune with area 4(Θ-ω), as
indicated in light red in Fig. 3(b). Note that Ωa2p−Ωa1p=4Θ. In addi-
tion, Ωa2p+Ωa1p is equal to 2Ωaapp, where Ωaapp is defined in analogy
to Ωaabbin Fig. 2(c). The latter is the spherical quadrangle defined by
states |a〉, |p〉, |ā〉 and p〉j . These last are defined by the intersection
of the great arcs joining |1〉 and |2〉 and passing through |a〉 and |p〉,
with the great circle perpendicular to the axis joining |1〉 and |2〉;
see Fig. 3(c). Thus, using all these relations, Eq. (17) can be rewritten
as

m ¼ exp i φ−
Ωaapp þΩap

2

� �� �
� c1pca1 exp i Θ−ωð Þð Þ þ c2pca2 exp −i Θ−ωð Þð Þ
n o

¼

¼ exp i φ−
Ωaapp þΩap

2

� �� �
� cos

γa1−γ1p

2

� �
cos Θ−ωð Þ þ i sin

π
2
−

γa1−γ1p

2

� �
sin Θ−ωð Þ

� 	

ð18Þ

where we used the following relations cos (γa2/2)=sin(γa1/2), cos
(γ2p/2)=sin(γ1p/2) and cos(γ1p/2)=sin(γ2p/2). Note now the
equivalence of the term inside the braces in the last line of Eq. (18)
with the expression in Eq. (4) describing the projection between
two states. This leads to the conclusion that this last term can be
regarded as the projection of a state θ ¼ ω; ε ¼ π

2−γa1〉


 onto a state

θ ¼ Θ; ε ¼ π
2−γ1p〉




 . This exactly corresponds to the shaded area in
Fig. 3(d), with solid angle Ωppbb where we used that γa1=γ1b.
Therefore, we can rewrite Eq. (18) as

m ¼ cos
γbp

2

� �
exp iφð Þ exp −i

Ωap

2

� �
exp −i

Ωaapp þΩppbb

2

 !
ð19Þ

Finally, let us use again Eq. (8) to note that
Ωaapp þΩppbb ¼ Ωabp þΩaabb, so the modulation can also be written
as

m ¼ cos
γbp

2

� �
exp iφð Þ exp −i

Ωap

2

� �
exp −i

Ωabp þΩaabb

2

� �
ð20Þ

This last representation is shown in Fig. 3(e), where the solid an-
gles Ωabp and Ωaabbhave been shadowed. Note that the last exponen-
tial terms in Eqs. (19) and (20) correspond to the phases gained
through an open loop of projections |b〉→|p〉→|a〉, but referred to
the great circle perpendicular to the axis joining |1〉 and |2〉.

Eqs. (19) and (20) show two alternative ways to write the com-
plex modulation obtained with polarization modulators. Note that
the intensity modulation is given by i=cos 2(γbp/2). The term
exp iφð Þ can be dependant on the modulation characteristics of the
modulator, but it does not depend on the selection of the states |a〉
and |p〉. On the contrary, the term exp(− iΩap/2) is fixed by the selec-
tion of states |a〉 and |p〉, but it is a constant phase which is not affect-
ed by the device modulation. The last exponential term in Eqs. (19)
and (20) is the main relevant term in polarization modulation devices
since it provides the only phase modulation termwhich depends both
on the modulation characteristics of the device (its retardance and its
principal axes variation) and the selection of the input and output
transmitted states. Therefore, the phase modulation characteristics
of the modulator can be controlled with the proper selection of the
states |a〉 and |p〉, corresponding to the light illuminating the device
and the state transmitted by the polarization detection system, re-
spectively. Note that the decomposition of solid angles presented in
Eq. (20) is especially useful when studying complex optical modula-
tors, since it splits the action of modulators into different terms. On
one hand, the Ωabp term accounts for retardance variation (2ω),
input polarizer and output analyzer polarizer states, while it is
completely insensitive to neutral axes variation, if any. On the other
hand, the Ωaabbterm accounts for neutral axes variation phase effect,
as well as input state and device retardance, while it is insensitive
to the analyzer polarizer state location. The Ωaabb term becomes an
extremely important phase factor when studying complex modula-
tion devices, like TN-LCDs, since they present variations in the orien-
tation of the neutral axes.

5. Example and experimental verification

In this final section, we present the application of the above pre-
sented method to evaluate the modulation produced by a parallel
aligned (PAL) liquid crystal display in different polarization configura-
tions. This type of polarization modulator is simple to analyze, since it
acts as a programmable waveplate with fixed orientation of the princi-
pal axes, and where one eigenphase (corresponding to the ordinary
axis) is maintained fixed, φ1=φo, whereas the other eigenphase
φ2=φe (corresponding to the extraordinary axis) can be modified via
a voltage applied to the liquid crystal cell, which in turns is controlled
via the gray level (g) addressed from a computer. Therefore, φ2=φe

(g), and the device has a controllable retardance 2ω(g)=φe(g)−φo.
In order to act as programmable phase plates, these devices are

usually illuminated with linearly polarized light aligned along the ex-
traordinary axis (orientation of the liquid crystal director). In our ex-
periment we used a different scheme. We illuminated the display
with linearly polarized light aligned at 45° with respect the ordinary
neutral axis, in order to produce substantial changes in the emerging



a b

Fig. 4. Spherical triangles on the Poincaré sphere, which are useful to calculate the complex modulation produced by a parallel aligned liquid crystal display. Input linear polariza-
tion is selected along S2 axis. (a) Spherical triangle used to calculate the phase gained after passing the display. (b) Spherical triangle used to calculate the phase upon projection
onto an analyzer |p〉.
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polarization states. We consider the ordinary axis coincident with the
S1 axis in the Poincaré sphere, and input polarization along the S2
axis. In this situation, as the retardance ω increases, the emerging
state describes the meridian starting at S2. This configuration pro-
duces a notable simplification of the geometric analysis, since now
the solid angle Ωaabb (Fig. 3(e)) vanishes.

The geometric calculation of the complex modulation can be done
in the various methods described above. First, we can evaluate the
phase φT : a→b of the state |B〉 emerging from the display as a function
of the retardance 2ω. This can be done according to the discussion in
Section 3, for instance with Eq. (13). If we consider the eigenvector
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Fig. 5. Phase modulation for the case with the polarizer oriented in θp=30°. (a) Geometric r
Phase terms Ωabp/2 and ω versus retardance. (c) Phase modulation ΔΨ versus retardance.
corresponding to the ordinary axis, then φ1=φo, and the two in-
volved solid angles are Ωa1b=−2ω and Ωab=0 (see Fig. 4a). There-
fore, the direct application of Eq. (13) leads to φT : a→b=φo+ω.
Note that the same results are easily obtained from Eq. (14) since
Ωaabb ¼ 0 and φ ¼ φo þω.

Now let us consider the projection of state |b〉 onto a polarizer |p〉.
As a first simple example, we can assume the linear polarizer oriented
along the direction of the ordinary axis, |p〉=|o〉 (Fig. 4(a)). In this
case, the polarizer is selecting the polarization component where no
phase modulation is produced versus the applied voltage, and there-
fore no phase variation with the retardance is expected. This is verified
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epresentation of the solid angle Ωabp as the retardance 2ω increases from 0 to 360°. (b)
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since the projection |b〉→|p〉 gives the solid angleΩbp/2=−ω, thus hav-
ing a total phase after the polarizer (Eq. (15)) Ψ ¼ φ−Ωbp=2 ¼ φo, i.e.,
constant and independent of the retardance ω. A similar argument
leads to a total phase Ψ=φo+2ω when the polarizer is selected along
the orientation of the extraordinary axis, |p〉=|e〉. In both cases the am-
plitude term is |m|=1/2 for every value ofω. This results on obtaining a
perfect phase-only modulation when |p〉=|e〉 and a constant transmis-
sion value when |p〉=|o〉.

More interesting is the analysis when the analyzer has an arbitrary
orientation θp. In this case we can directly apply the method discussed
in Section 4, Eq. (20). The amplitude term is given by |m|=cos(γbp/2).
For this case Ωap=0 since |a〉 and |p〉 lie both in the equator (Fig. 4
(b)), and also Ωaabb ¼ 0. Therefore, the total phase is given by
Ψ ¼ φ−Ωabp=2. The relative phase modulation, understood as the rela-
tive phase difference between the phase Ψ for a given retardance 2ω
with respect to the phase Ψ0 for a null retardance, is given by

ΔΨ ¼ Ψ−Ψ0 ¼ ω−
Ωabp

2
ð21Þ

Note that the ω term is independent of the orientation of the
polarizer. Thus, the changes in the phase modulation when changing
the orientation of the polarizer are due to the variations in the solid
angle Ωabp. This is shown in Fig. 5(a), which represents how this
solid angle grows as the value of ω increases. The spherical triangle
|a〉,|b〉,|p〉 has been drawn in the Poincaré sphere as ω grows from
0° to 360° in steps of 30°. The orientation of the polarizer has been se-
lected to be θp=30°. Fig. 5(b) shows the evolution of Ωabp/2 with the
retardance for this case. For comparison, the term ω in Eq. (21) has
c

Gray level (g)

a
2ω / π

In
te

ns
ity

 o
f o

rd
er

s

Retardance 2ω (units of π)

R
et

ar
da

nc
e 

2ω
 (u

ni
ts

 o
f π

)

Fig. 6. Experimental results. (a) Retardance 2ω versus the addressed gray level (g). (b) Norm
erated by a binary grating. (d) Phase modulation ΔΨ.
been also included as half the lune defined by |a〉,|b〉,|o〉. The phase
term Ωabp/2 shows a non-linear behavior with respect to the retar-
dance, being its slope stiffer as the analyzer angle tends to θp=45°.
Their differenceΔΨ (Eq. (21)) is shown in Fig. 5(c). Also note that the in-
tensity and phasemodulation components can be related to the polarizer
orientation θp and the retardance 2ω simply by applying spherical trigo-
nometry relations in the |a〉,|b〉,|p〉 spherical triangle, leading to

i ¼ mj j2 ¼ 1
2

1þ cos 2ωð Þ sin 2θp
� �� �

; ð22aÞ

tan Ωabp

� �
¼

sin 2ωð Þ cos 2θp
� �

cos 2ωð Þ þ sin 2θp
� � ð22bÞ

Regarding solid angle definitions, onemust accomplish the follow-
ing rules in order to properly define the correct shapes and calculate
their corresponding area:

• Their lateral arcs (in this case arcs |a〉,|b〉 and |b〉,|p〉) must always
vary continuously when the device retardance varies in a continu-
ous way. In other words, the arc lengths always increase or decrease
continuously.

• No arc jumps are allowed, and consequently phase jumps are not
described by spontaneous transitions of these arcs, but for fast arc
orientation variations.

These rules have been used when depicting the shapes in Fig. 5(a)
and when calculating their corresponding area. These rules were
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found when comparing geometrical predictions with Jones calculus
estimations, otherwise they do not match each other.

Regarding the non-linear behavior of phase modulation Ψ shown
in Fig. 5(c), it is due to the geometrical shape defining Ωabp/2, and it is
produced by rapid rotation of the arc from |b〉 to |p〉 (see Fig. 5(a)).
This rotation presents the highest sensitivity for retardance 2ω=π,
as verified by the high Ωabp/2 slope in Fig. 5(b). In addition, if we con-
tinuously approach |p〉 to |a〉, the total phase modulation tends to pro-
duce an abrupt π phase jump in the limit |p〉≅ |a〉. Similar phase jumps
have been registered for the complex modulation of a TN-LCD system
when it is inserted between parallel polarizers [21]. Another experi-
ment showing phase jumps for an interferometric system using a ro-
tating static waveplate is presented in ref. [3].

Finally, we have verified these results and experimentally mea-
sured the complex relative modulation in a liquid crystal display by
means of a diffractive method presented in [22]. In our case, we
used a parallel aligned nematic liquid crystal on silicon (LCOS) display
from Hamamatsu, X10468-01 model, with 800×600 pixels. The volt-
age applied to the display is controlled through the gray level (g)
addressed from a computer. First, a uniform screen is addressed in
order to measure the intensity modulation i(g)=|m|2 as a function
of the addressed gray level g. Then, binary gratings are addressed to
the display with one fixed gray level (g0), and the second one chang-
ing in the complete range. From the intensity measured in the gener-
ated zeroth and first diffraction orders, the phase modulation ΔΨ(g)
can be obtained according to the method in ref. [22].

Fig. 6 collects the obtained experimental results. Fig. 6(a) shows
the measured retardance 2ω versus the addressed gray level (g). It
shows a linear retardance variation that exceeds 3π radians for the
operating wavelength of 514 nm from an Ar ion laser. Fig. 6(b)
shows the normalized intensity modulation i(g) in the studied config-
uration (the input polarizer oriented at 45°, and the analyzer polari-
zer is oriented at 30° respect to the PAL ordinary axis). The solid
line shows the prediction while the dots correspond to the experi-
mental data, showing an excellent agreement. Fig. 6(c) shows the in-
tensity of zeroth (I0) and first (I1) diffraction orders generated by a
binary diffraction grating with a reference gray level g0 (which we se-
lected g0=150 in order to correspond to a retardance equal to 2π)
and a variable gray level g. These intensities are given by relations [22]:

I0 ¼ 1
4

ig þ i150 þ 2
ffiffiffiffiffiffiffiffiffiffiffi
igi150

q
cosΔΨ

� �
; ð23aÞ

I1 ¼ 1
π2 ig þ i150−2

ffiffiffiffiffiffiffiffiffiffiffi
igi150

q
cosΔΨ

� �
; ð23bÞ

Again, solid lines and dots correspond to the predictions and the
experimental data, respectively, and show a very good agreement. Fi-
nally, Fig. 6(d) shows the phase modulation ΔΨ(g) derived according
to the method in [22], together with the prediction obtained from the
geometrical analysis, which shows good agreement as well.

6. Conclusions

In summary, we have presented a method to geometrically
evaluate the complex response of polarization systems, based on
the Pancharatnam connection on the Poincaré sphere. This work
contributes to demonstrate that the Poincaré sphere provides full
information for both amplitude and phase modulation determina-
tion in optical modulators based on the variation of the optical
properties of wave plates. The proposed geometrical analysis com-
pletes previous ones, especially those in refs. [9–11], by consider-
ing polarization states emerging from the modulator different
from the input state, and therefore describing non-closed loops
on the Poincaré sphere.

The presented analysis can be a useful tool to understand the phys-
ical insights of the complex (amplitude and phase)modulation in polar-
ization optical modulators, especially for programmable liquid crystal
wave plates. This method can provide a valuable and systematic tool to
analyze the origin of several phenomena, like non-linear phase modula-
tion effects, increased phase modulation [17] or even more complex
physics problems.Here, it has been applied to evaluate the complexmod-
ulation of a parallel aligned liquid crystal display, showing a very good
agreement between experiment and the predicted result.
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