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A	 novel	 concept	 based	 on	 tilted	 spherical	 lenses	 for	 optical	 encryption	 using	 Lohmann’s	 type	 I	 systems	 is	
presented.	The	tilt	angle	of	the	spherical	lenses	is	used	as	encrypted	key	and	the	decryption	performance	is	studied	
both	 qualitatively	 (visual	 image	degradation)	 and	 quantitatively	 (MSE	 analysis)	by	 numerical	 simulations.	The	
paper	presents	a	general	mathematical	framework	in	virtue	of	the	dioptric	power	matrix	formalism	and	oblique	
central	refraction	used	in	optometry	field.	Computer	simulations	show	that	image	information	cannot	be	retrieved	
after	a	few	degrees	of	tilt	on	both	spherical	lenses	in	the	encryption	system.	In	addition,	a	preliminary	experiment	
in	presented	considering	a	hybrid	encryption/decryption	process	where	the	 image	 is	numerically	encrypted	but	
optically	decrypted.		
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1. INTRODUCTION 
The	secure	transmission	of	information	among	restricted	numbers	of	
persons	or	entities/companies	in	several	and	different	areas	such	as	
industry,	 business,	 defense	 and	 others	 is	 a	 very	 appealing	 research	
field.	Aimed	to	 that,	a	big	amount	of	methods	using	different	coding	
processes	have	been	developed	in	the	last	years.	Among	them,	optical	
image	encryption	systems	play	an	important	role	due	to	its	inherent	
capacity	 to	 process	data	 in	 parallel.	Most	 of	 them	are	 based	 on	 the	
technique	 proposed	 by	 Réfrégier	 and	 Javidi	 in	 1995	 and	 known	 as	
double	random	phase	encryption	(DRPE)	[1].	After	this	pioneer	work,	
Javidi	et	al.	reported	on	different	modifications	of	that	method	in	order	
to	improve	the	encryption	[2‐9].	The	common	characteristic	of	these	
methods	 is	 the	use	of	 two	 classical	 Fourier	 transformers	 in	 cascade	
with	two	random	phase	masks	(RPM),	one	placed	at	the	input	plane	
and	 the	 other	 placed	 at	 the	 Fourier	 plane	 of	 the	 first	 Fourier	
transformer	just	to	get	the	encrypted	image.	And	the	same	RPMs	act	as	
keys	in	the	decryption	process.	
Making	 use	 of	 the	 fractional	 Fourier	 systems	 introduced	 by	

Lohmann	 [10,11]	 and	 Mendlovic	 and	 Ozaktas	 [12‐14],	 some	 years	
later	Unnikrishnan	et	al.	improved	the	security	of	this	kind	of	systems	
by	 performing	 the	 encryption	 with	 a	 pair	 of	 fractional	 Fourier	
transformers	in	cascade	[15,16].	And	nowadays	the	fractional	orders	
constitute	 additional	 keys	 for	 the	 encryption/decryption	 of	
information.		
After	those	works	using	fractional	Fourier	systems,	several	methods	

based	 on	 iterative	 fractional	 Fourier	 transform	 [17,18]	 as	 well	 as	

encoding	in	the	Fresnel	domain	[19]	have	been	successfully	proposed.	
And	 many	 references	 have	 been	 published	 since	 then	 in	 the	 field	
following	 these	 ideas	 such	 as,	 for	 instance,	 encryption	 obtained	 by	
combining	 digital	 holography	 and	 the	 joint	 transform	 correlator	
architecture	 [20],	 or	 double	 image	 encryption	 combining	 fractional	
Fourier	domain	and	pixel	scrambling	technique	[21],	or	 linear	blend	
operation	[22].	
The	extension	to	anamorphic	fractional	Fourier	transformers	in	the	

DRPE	 is	 straightforward	 [23‐26].	 Those	 approaches	 provide	 the	
encoding	 of	 a	 2D	 image	with	 two	 different	 fractional	 orders	 in	 two	
orthogonal	 directions	 by	 using	 cylindrical	 lenses	 in	 Lohmann’s	 bulk	
systems	[27].	As	a	way	to	improve	security	 far	beyond,	Kumar	et	al.	
reported	on	the	use	of	anamorphic	system	in	a	two	Lohmann’s	type	II	
in	cascade	configuration	where	the	spherical	lenses	were	replaced	by	
pairs	 of	 orthogonally	 aligned	 cylindrical	 lenses	 [28].	Moreover,	 they	
introduced	global	 in‐plane	rotations	at	each	of	the	 fractional	Fourier	
transformers	as	extra	encryption	keys.	
In	a	previous	paper	inspired	on	the	method	reported	by	Kumar	et	al,	

we	have	proposed	the	use	a	pair	of	two	Lohmann’s	type	I	systems	in	
cascade	 where	 each	 spherical	 lens	 has	 been	 replaced	 by	 a	 non‐
orthogonal	 cylindrical	 doublet	 [29].	 The	 non‐orthogonal	 cylindrical	
doublet	is	equivalent	to	an	orthogonal	one,	rotated	with	regard	to	the	
coordinate	axes.	Both	 the	rotation	angle	and	 the	 focal	 lengths	of	 the	
equivalent	doublet	are	dependent	on	the	original	angle	between	the	
cylindrical	lenses	and	on	the	angle	of	the	doublet	as	a	whole	with	the	
coordinate	axes.		



Despite	the	great	number	of	encryption	systems	in	both	revolution	
symmetry	and	anamorphic	configuration	previously	mentioned,	to	the	
best	of	our	knowledge	nobody	has	considered	the	possibility	of	tilting	
the	lenses	as	an	additional	key	in	the	Fourier	transformers.	It	is	well	
known	that	a	slightly	tilted	spherical	lens	generates	a	small	amount	of	
astigmatism	 named	 as	 astigmatism	 by	 oblique	 incidence.	 In	 this	
generated	conoid	of	Sturm,	the	principal	meridians	of	 the	astigmatic	
wavefront	 leaving	 the	 tilted	 spherical	 lens	 are	 aligned	 with	 the	
tangential	 and	 the	 sagittal	 planes	 of	 the	 lens.	 This	 behavior	 can	 be	
extended	also	to	the	case	of	sphero‐cylindrical	lenses	in	general	where	
two	 different	 cases	 can	 be	 identified.	 On	 one	 hand,	when	 the	 tilt	 is	
applied	around	one	of	the	principal	meridian	of	the	sphero‐cylindrical	
lens,	 the	 tangential	 and	 the	 sagittal	 meridians	 coincide	 with	 the	
principal	meridians,	 and	 the	 rays	 passing	 through	 them	will	 stay	 at	
those	meridians.	In	this	case,	the	tilt	changes	the	values	of	the	principal	
focal	lengths	but	does	not	change	the	orientation	of	the	cylinder	axis.	
On	 the	 other	 hand,	 when	 the	 tilt	 is	 not	 applied	 around	 a	 principal	
meridian,	both	the	focal	lengths	values	as	well	as	the	orientation	of	the	
cylinder	axis	change	with	the	tilt	angle.	
The	 problem	 of	 tilted	 lenses	 is	 treated	 in	 optometry	 with	 the	

concept	of	oblique	central	refraction	(OCR)	[30,31].	OCR	refers	to	the	
case	produced	when	the	light	passes	through	the	central	part	of	a	tilted	
lens.	This	situation	happens,	for	instance,	when	a	person	looks	straight	
ahead	 through	 the	 optical	 center	 of	 a	 spectacle	 lens	 with	 either	 a	
pantoscopic	 or	 a	 faceform	 tilt.	 Both	 angles	 refer	 to	 tilts	 along	 the	
horizontal	and	the	vertical	axis,	respectively,	in	order	to	accommodate	
the	 glasses	 to	 the	 head’s	 patient	 anatomy	 to	maintain	 the	 pupillary	
distance	constant	for	all	the	vision	directions.	Keating	[30,31]	reported	
on	OCR	thin	lens	third	order	equations	to	calculate	either	the	effective	
sphero‐cylindrical	parameters	of	the	tilted	lens	or	vice	versa:	which	are	
the	compensated	lens	parameters	in	such	a	way	that,	when	the	lens	is	
tilted,	 the	 effective	 sphero‐cylindrical	 parameters	 match	 the	
prescription	to	be	compensated.	Note	that	the	latter	case	is	of	special	
significance	in	optometry	because	there	are	many	practical	situations	
(sunglasses,	 sport	 googles,	 etc.)	 where	 it	 is	 necessary	 to	 apply	 this	
correction.	Keating	made	use	of	the	Coddington	equations	[32,33]	to	
derive	the	effective	horizontal	and	vertical	dioptric	power	parameters	
of	 the	 tilted	 lens	 using	 the	 dioptric	 power	matrix	 (DPM)	 formalism	
introduced	by	Long	 [34].	 Some	years	 later,	Blendowske	report	on	a	
slightly	 modification	 of	 the	 Keating’s	 proposed	 equations	 based	 on	
wavefront	tracing	and	analytical	derivation	of	the	equations	[35].	And	
finally	Harris	reported	on	a	generalization	of	the	Blendowske	equation	
by	defining	a	general	tilt	matrix	valid	for	tilts	about	any	axis	and	for	any	
type	of	lens	(stigmatic	or	astigmatic)	[36].	
In	this	paper,	we	propose	to	study	the	performance	of	encryption	

systems	when	the	encryption/decryption	key	is	produced	by	tilting	the	
lenses	in	Lohmann’s	type	I	systems.	Although	the	proposed	theory	is	
derived	for	the	general	framework	of	sphero‐cylindrical	lenses,	for	the	
sake	 of	 simplicity	we	 have	 included	 only	 spherical	 examples	 in	 the	
numerical	simulations	as	well	as	in	the	experimental	implementation.	
Section	2	presents	 the	basic	 theory	using	DPM	formalism	applied	to	
the	change	in	the	DPM	of	a	non‐orthogonal	cylindrical	doublet.	Note	
that	the	DPM	corresponding	to	a	spherical	lens	derives	as	a	particular	
case	 of	 the	 previous	 one.	 Section	 3	 includes	 computer	 simulation	
results	 from	 a	 qualitative	 and	 quantitative	 point	 of	 view	 and	 for	
different	variation	of	 the	encryption	 tilt	angle.	Section	4	presents	an	
experimental	validation	of	a	single	encryption/decryption	case	at	the	
lab	using	spherical	lenses.	And	Section	5	concludes	the	paper.	

2. MATHEMATICAL GENERAL FRAMEWORK 
Let	us	consider	an	anamorphic	fractional	Fourier	transformer	where	a	
non‐orthogonal	 cylindrical	 doublet	 is	 placed	 between	 two	 parallel	
planes.	 If	we	tilt	 the	anamorphic	cylindrical	doublet	and	under	 third	

order	 approximation,	 the	 dioptric	 power	 of	 the	 doublet	will	 change	
and,	as	consequence,	the	fractional	orders	will	also	change	because	of	
the	focal	lengths	variation.		
Keating	 described	 the	 dioptric	 power	 variation	 using	 DPM	

formalism	 from	 the	 Coddington	 equations	 [30,31].	 DPM	 formalism	
was	 introduced	 by	 Long	 [34]	 and	 it	 is	 a	 very	 useful	 formalism	 in	
optometry	and	physiological	optics	for	a	wide	variety	of	calculations	
such	 as	 lens	 decentration	 problems	 and	 prismatic	 effects	 [34],	
multivariate	 analysis	 and	 changes	 in	 refractive	 status	 [37,38],	
intraocular	 lens	 power	 estimations	 [39]	 and	 lateral	 magnification	
calculations	 [40],	 just	 to	 cite	 a	 few.	 Power	 matrices	 generalize	 the	
dioptric	 power	 of	 any	 astigmatic	 surface	 and	 become	 the	 natural	
mathematical	 representation	 of	 dioptric	 power	 in	 general	 [41].	 And	
since	we	are	only	to	consider	changes	in	the	dioptric	power,	we	will	
describe	the	tilt	effects	in	the	lenses	by	using	the	2X2	DPM	formalism	
[34].	Considering	the	general	case	of	an	astigmatic	lens	represented	by	
its	classical	sphero‐cylindrical	notation	of	(S,	C	x	),	its	DPM	becomes	in:	
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and	the	sphere	and	cylinder	values	are	computed	as	S	=	Px	and	C	=	Py	‐	
Px,	where	Px	and	Py	 are	 the	dioptric	powers	along	 the	x‐	and	y‐axes,	
respectively.	Finally,	the	‐angle	represents	the	angle	between	the	S‐
meridian	and	the	x‐axis.	
Equation	(1)	is	the	Long’s	matrix	formalism	of	the	dioptric	power	

[34]	and	the	diagonal	elements	of	 that	matrix	are	the	powers	of	 the	
lens	 in	 the	x‐	and	y‐axis,	respectively.	When	S	=	0	and		≠	0,	Eq.	(1)	
simplifies	to	the	DPM	of	an	in‐plane	rotated	cylindrical	lens:	
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Let	 us	 consider	 now	 a	 cylindrical	 doublet	 composed	 of	 two	
cylindrical	lenses	being	1	and	2	the	angles	of	the	respective	cylinder	
axes	with	 the	 x‐axis.	 Note	 that	 this	 is	 our	 case	 in	 Lohmann’s	 type	 I	
systems	where2	 is	not	necessarily	equal	 to	2	=	1	+	90.	Then,	 the	
DPM	 of	 the	 equivalent	 lens	 results	 as	 the	 addition	 of	 two	 power	
matrices	according	to	Eq.	(2),	that	is:	
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For	determining	the	parameters	of	the	equivalent	lens,	one	solution	
is	 to	 diagonalize	 the	 matrix.	 From	 a	 physical	 point	 of	 view,	 the	
eigenvalues	λ1	and	λ2	are	the	principal	powers	of	the	equivalent	lens:		
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Diagonalization	 process	 yields	 in	 the	 following	 characteristic	
equation:	
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and	if	we	call			=	1	‐	2,	the	solution	of	Eq.	(5)	is:	
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The	eigenvalues	λ1	and	λ2	are	the	powers	of	the	virtual	orthogonal	
doublet	equivalent	to	the	pair	of	non‐orthogonal	cylindrical	lenses.	And	
this	virtual	orthogonal	doublet	will	be	rotated	an	angle		with	respect	
to	the	x‐axis.	Let	us	call	

 1/22 2
1 2 1 2C C 2 C cos 2C C     		 (7)	



If	 we	 now	 take	 the	 minus	 sign,	 the	 corresponding	 eigenvalue	 is	
given	by:	
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Taking	 into	 account	 that	 the	 corresponding	 eigenvector	 can	 be	

written	as	
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Finally,	the	rotation	angle	of	the	virtual	doublet	is		
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When	1	=	0,	Eq.	(10)	reduces	to		
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This	 is	 another	 version	 of	 the	 one	 obtained	 by	 Macukow	 and	
Arsenault	using	ray	matrix	theory	[42].	
Another	way	to	determine	the	resulting	orthogonal	lens	parameters	

from	 Eq.	 (3)	 is	 by	 using	 the	 trace	 (represented	 by	 t)	 and	 the	
determinant	 (represented	 by	 d)	 of	 the	 DPM	 [43].	 It	 can	 be	
demonstrated	 from	 Eq.	 (1)	 that	 the	 trace	 is	 t(P)	 =	 2S+C,	 that	 is,	 is	
independent	of	the	coordinate	system	in	which	is	expressed	the	DPM.	
Similarly,	the	determinant	becomes	d(P)	=	S(S+C).	From	these	values,	it	
is	possible	to	retrieve	the	resulting	lens	in	sphero‐cylindrical	notation	
as	[43]:	
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where	a11	=	S+C	sin2	and	a12	=	‐	C	sin	cos.	
For	the	cylindrical	doublet	represented	by	Eq.	(3),	the	trace	becomes	

in	t(Pcyl)	=	C1+C2	and	the	determinant	in	d(Pcyl)	=	C1	C2	sin2.	Thus,	we	
finally	get:	
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Let	 us	 consider	 now	 that	 the	 doublet	 is	 titled	 an	 angle	 	 either	
faceform	or	pantoscopic.	For	a	faceform	tilt	and	distant	object,	we	can	
use	the	Coddington	equations	[32,	33]	to	find	the	effective	horizontal	
and	vertical	dioptric	powers	Ex,	Ey	of	the	tilted	lens	by	knowing	the	lens	
powers	Px,	Py	before	the	tilt	[30,31]:	
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being	n	 the	refractive	 index	of	 the	 lens.	Equations	 (17‐20)	are	 third	
order	approximated	equation,	so	they	begin	to	lose	accuracy	for	high	
tilt	angles	(			30	according	to	Refs.	[30,31]).	
Then,	the	tilted	lens	has	an	effective	matrix	for	faceform	tilt	equal	to:	
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where:	
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From	Eqs.	(19),	(20)	and	(22),	Sc,	Tc,	and	Hc	do	not	depend	on	the	
dioptric	power	and	can	be	tabulated	for	n	and		[30,31].	However	and	
according	to	Blendowske	[35],	the	off‐diagonal	elements	of	the	matrix	
in	Eq.	(21)	should	be	slightly	modified	because	the	value	of	Hc	must	be	
calculated	as	the	geometric	mean	of	Sc	and	Tc	instead	of	the	arithmetic	
mean,	i.e.:	
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Nevertheless,	 the	 numerical	 difference	 between	 both	 factors	 for	
angles	up	 to	30	 is	 so	small	 that	 is	negligible	 for	practical	purposes.	
Accepting	 the	 Blendowske	 modification,	 the	 tilted	 power	 matrix	
becomes	in:	
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Blendowske	defined	the	faceform	tilt	matrix	as:	
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and	the	tilted	power	matrix	becomes	in:	
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Considering	that	the	trace	and	the	determinant	of	this	new	matrix	
are	t(Ptilt)	=	TC	Px	+	SC	Py	and	d(Ptilt)	=	TC	SC	Px	Py		‐	(HC	Pt)2,	respectively,	the	
values	resulting	from	Eqs.	(12‐14)	are:	
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Let	 us	 consider	 an	 example	 just	 to	 fix	 some	 ideas.	 Suppose	 a	
cylindrical	 doublet	 composed	 of	 one	 cylindrical	 lens	 equal	 to	 (0.00,	
4.00x0)	 combined	 with	 another	 equal	 to	 (0.00,	 6.00x50).	 The	
resulting	power	matrix	according	to	Eq.	(3)	is:	
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	 									(30)	

being	D	=	diopters.	The	trace	and	the	determinant	are	t(Pcyl)	=	10D	and	
d(Pcyl)	=	14.09D2.	Following	Eqs.	(27‐29):	C	=	±6.61D,	S	=	1.70D	or	S	=	
8.30D	(depending	on	the	C	sign)	and		=	31.67.	Now,	we	perform	a	
faceform	tilt	of		=	24	.Supposing	a	refractive	index	value	of	the	lenses	



of	n	=	1.5,	we	get	Tc	=	1.264,	Sc	=	1.055	and	Hc	=	1.155.	From	Eq.	(24),	the	
effective	matrix	representing	the	tilted	lens	is:	
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		 		(31)	

Coming	back	to	the	sphero‐cylindrical	notation,	the	new	trace	and	
determinant	 are	 t(E)	 =	 11.29D	 and	 d(E)	 =	 	 18.81D2,	 and	 the	 new	
parameters	of	 the	doublet	are	CE	=	±7.18D,	SE	=	2.06D	or	SE	=	9.24D	
(depending	on	the	CE	sign),	and	E	=	35.03.	Notice	that,	as	a	result	of	
the	faceform	tilt,	the	principal	powers	of	the	equivalent	lens	as	well	as	
the	cylinder	axis	have	changed	from	(S,	C	x	)	=	(8.3D,	‐6.6D	x	31.7)	to	
(S,	C	x	)	=	(9.25D,	‐7.2D	x	35).	This	is	a	significant	change	caused	by	the	
tilt	and	we	need	to	know	the	proper	key,	that	is,	the	new	parameters	of	
the	 tilted	 lens	 used	 in	 the	 encryption,	 for	 the	 decryption	 process.	
Otherwise	 we	 will	 get	 a	 wrong	 decryption	 and,	 consequently,	
information	lost.	
A	 similar	 procedure	 can	 be	 considered	 for	 the	 pantoscopic	 tilt.	

According	to	Blendowske	[35],	the	pantoscopic	tilt	matrix	is:	
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meaning	 that	 the	 corresponding	 tilted	 power	 matrix	 can	 be	
computed	as:	
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	 	 (33)	

Both	faceform	and	pantoscopic	tilt	matrices	are	particular	cases	of	a	
general	 tilt	 matrix	 developed	 by	 Harris	 some	 months	 later	 the	
Blendowske’s	 work	 [36].	 This	 general	 tilt	 matrix	 N’()	 can	 be	
computed	as:	
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being	I	the	identity	matrix,		the	tilt	angle,	and		is	the	angle	of	the	

axis	where	the	tilt	is	performed.	For	a	general	description	about	how	
this	matrix	is	obtained,	the	reader	can	consult	Ref.	[36].	As	it	can	be	
easily	seen	from	Eq.	(34),		=	90	and		=	0	retrieve	the	faceform	and	
the	pantoscopic	tilt	matrices	of	Eqs.	(25)	and	(32)	,	respectively.	

3. NUMERICAL SIMULATIONS 
The	performance	of	tilted	lenses	as	additional	key	to	improve	security	
in	encryption/decryption	system	is	analyzed	by	numerical	simulations	
using	Matlab	 platform.	We	 propose	 an	 encryption	 system	based	 on	
two	Lohmann’s	type	I	systems	in	cascade	including	spherical	lenses	as	
it	 is	 depicted	 through	 Fig.	 1.	 The	 use	 of	 spherical	 lenses	 instead	 of	
anamorphic	 doublets	 does	 not	 restricts	 the	 applicability	 of	 the	
proposed	approach	but	it	simplifies	their	use.	For	this	reason,	we	have	
performed	simulations	considering	spherical	lenses.	
The	classical	encrypted	branch	can	be	seen	through	Fig.	1(a)	where	

the	first	lens	L1	provides	a	first	fractional	Fourier	transformer	plane	
(FrFTP)	of	the	input	object	which	multiplied	at	the	input	plane	(IP)	by	a	
first	 random	mask	 (RM1).	 From	 IP	 to	 FrFTP	we	 apply	 a	 numerical	
propagation	 algorithm	 based	 on	 angular	 spectrum	 approach	 in	 a	
double	stage:	first	a	propagation	distance	of	d1	until	L1,	multiplication	
of	 the	 complex	 amplitude	 distribution	 by	 the	 L1	 lens	 complex	
transmittance,	 and	 d1	 numerical	 second	 propagation.	 The	 complex	
amplitude	 distribution	 at	 FrFTP	 is	 then	 multiplied	 by	 the	 second	
random	 mask	 (RM2)	 and	 a	 similar	 double	 stage	 numerical	
propagation	process	using	a	difference	distance	d2	and	a	new	lens	L2	is	
applied	until	the	output	plane	(OP).	We	are	using	d1	=	150mm	and	d2	=	

200	as	propagation	distances,	and	f1	=	300mm	and	f2	=	500mm	as	focal	
lengths	of	the	lenses	L1	and	L2,	respectively.		
This	 encryption	 process	 can	 be	 perfectly	 decrypted	 and	 the	

information	about	the	input	object	completely	retrieved	by	using	the	
decrypted	brand	included	in	Fig.	1(c)	and	by	knowing	the	previously	
introduced	 parameters	 in	 the	 encryption	 branch.	 Note	 that	 the	
propagation	starts	from	the	OP	in	reverse	sense	(negative	propagation	
distances)	and	the	decryption	considers	complex	conjugate	functions	
of	the	encoding	elements	(L1,	L2,	RM1	and	RM2).	However,	a	tilt	in	the	
lenses	L1	and	L2	is	applied	as	additional	key	for	encryption	(see	Fig.	
1b)	 meaning	 that,	 even	 in	 the	 case	 that	 one	 knows	 the	 encrypted	
parameters,	the	decryption	process	will	not	properly	work	due	to	the	
tilted	angle	using	in	the	encryption.	

	

Fig.	1.		Scheme	of	the	proposed	encryption/decryption	process	using	
spherical	 tilted	 lenses:	 (a)	 is	 the	 encryption	 system	 with	 two	
Lohmann’s	 type	 I	 systems	 in	 cascade,	 (b)	 depicts	 our	 proposed	
implementation	where	the	lenses	(L1	and	L2)	can	be	tilted	1	and	2,	
respectively,	.and	(c)	the	decryption	branch	without	tilted	lenses.	The	
rest	of	 the	symbols	mean:	 IP	 (Input	Plane),	RM1	(Random	Mask	1),	
FrFTP	(Fractional	Fourier	Transform	Plane),	RM2	(Random	Mask	2),	
OP	 (Output	 Plane),	 and	 d1,	 d2	 are	 the	 propagation	 distances.	 Red	
arrows	indicate	the	light	path.	

Figure	2	includes	some	numerical	results	to	illustrate	the	process.	As	
input	object	(Fig.	2a)	we	have	used	a	homemade	image	including	a	QR	
code	in	decreasing	size	as	in	a	resolution	test	target.	The	input	object	is	
encrypted	by	two	random	masks	as	the	one	included	in	Fig.	2b.	The	
spherical	profile	of	one	of	the	lenses	is	included	in	Fig.	2c	while	a	cross‐
section	along	the	horizontal	and	vertical	black	lines	is	plotted	in	Fig.	2d.	
There	is	no	difference	in	curvature	because	it	is	a	spherical	lens.	But	
applying	a	faceform	tilt	of	30,	 the	phase	profile	of	 the	lens	changes.	
The	new	tilted	lens	becomes	in	a	sphero‐cylindrical	lens	represented	in	
Fig.	2e	and	in	Fig.	2f	where	now	the	two	cross‐sections	have	different	
curvature	as	corresponds	to	a	sphero‐cylindrical	lens.	
To	check	the	performance	of	the	proposed	method,	we	have	divided	

the	 numerical	 simulations	 into	 three	 different	 cases.	 The	 first	 one	
relates	with	tilting	only	the	first	L1	lens	while	remaining	untilted	the	
second	one	L2.	The	encryption	is	done	for	4	different	angles	(2.5,	5,	
7.5	and	10)	and,	 for	each	encryption	angle,	 the	decryption	is	done	



separately	 for	each	 lens	by	continuously	varying	 the	decoding	angle	
from	‐15	 to	15.	The	second	case	involves	a	similar	procedure	than	
the	 previous	 one	 but	 for	 the	 second	 lens	 L2.	 And	 the	 third	 case	 is	
defined	by	encrypting	with	the	two	lenses	L1	and	L2	simultaneously	
tilted	 the	 same	 angle	 (2.5,	 5,	 7.5	 and	 10).	 On	 all	 the	 cases,	 we	
present	 two	 outputs	 for	 analyzing	 the	 results:	 i)	 the	 retrieved	
decrypted	images	of	the	input	object	to	qualitatively	show	how	image	
becomes	degraded	and	information	lost	for	certain	interesting	points	
on	each	configuration,	and	ii)	the	decryption	sensitivity	with	respect	to	
the	perfect	decrypted	image	which	is	usually	measured	by	the	mean	
squared	error	(MSE)	between	the	decrypted	and	the	original	images.	
The	MSE	is	given	by:	
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where	I0(i,	 j)	denotes	the	original	 image,	 Id(i,	 j)	 the	decrypted	one,	
and	 M	 and	 N	 are	 the	 number	 of	 pixels	 along	 the	 x‐	 and	 y‐axes,	
respectively.	

	

Fig.	2.		Some	interesting	images	used	in	the	numerical	simulations:	(a)	
the	 input	 object,	 (b)	 a	 random	mask	 for	 the	 encryption/decryption	
process,	(c)	the	phase	profile	of	a	spherical	lens	and	(d)	the	plots	along	
its	vertical	and	horizontal	meridians	(solid	black	 lines),	(e)	 the	same	
lens	after	a	faceform	tilt	of	30	and	(f)	the	plots	along	its	vertical	(solid	
blue	line)	and	horizontal	(solid	red	line)	meridians.	

A. Encryption with tilted lens L1 

Figure	3	includes	the	numerical	simulation	results	obtained	when	the	
first	lens	L1	is	tilted	from	0	to	10	at	2.5	steps.	Figure	3a	presents	the	
MSE	 results	 through	 two	 plots	 for	 the	 5	 previously	 identified	 tilted	
cases.	 The	 two	 plots	 are	 the	 normalized	 MSE	 profiles	 when	 the	
decryption	 is	performed	by	varying	 the	decrypted	 tilted	angle	of	L1	
from	 ‐15	 to	 +15	 (solid	 black	 line)	 and	 the	 same	 but	 for	 L2	 lens	
(dashed	 black	 line).	We	 can	 see	 that	 a	 perfect	 image	 (MSE	 =	 0)	 is	
recovered	 when	 the	 tilted	 angle	 of	 the	 lens	 L1	 in	 the	 decryption	
process	 equals	 the	 one	 used	 for	 that	 lens	 in	 the	 encryption	 (points	
targeted	with	⨯	green	marks).	For	those	points,	the	recovered	image	is	
exactly	the	input	object	(Fig.	2a).	Obviously,	this	is	not	the	case	when	
the	angular	variation	is	 introduced	in	the	second	L2	lens	leaving	the	
first	L1	lens	at	0.	
But	what	it	is	interesting	to	see	is	which	image	is	recovered	when	

the	 decryption	 is	 performed	 without	 tilt	 the	 lenses.	 That	 is,	 the	
encryption	 is	 performed	 with	 tilted	 angles	 and	 the	 decryption	 is	
performed	without	knowledge	of	such	encryption	key.	Those	cases	are	
targeted	with	the	⨯	red	marks	identified	by	4	points	in	Fig.	3a	and	the	
decrypted	results	are	presented	in	the	images	depicted	from	Fig.	3b	to	
Fig.	3e.	Obviously	and	as	we	 can	see	 from	 the	 first	graph	 in	Fig.	3a,	

when	the	encryption	is	performed	with	0/0	at	L1/L2,	the	decryption	
retrieves	 a	perfect	 image	 (MSE	=	0).	But	 as	 the	 tilted	 angle	 of	L1	 is	
increased	 (2.5/0,	 5/0,	 7.5/0	 and	 10/0	 at	 L1/L2),	 the	 result	
becomes	to	be	noisier	and,	for	the	latest	case	(10/0	at	L1/L2),	only	
the	letters	can	be	read	from	the	retrieved	image.	Note	that	although	the	
graphs	indicate	a	value	up	to	95%	of	MSE	for	5/0,	7.5/0	and	10/0	
at	L1/L2,	it	is	a	normalized	value	for	each	encryption/decryption	case	
and	does	not	mean	 full	 information	 lost.	For	 this	 reason,	 the	output	
must	be	read	taking	both	results	(plots	and	images)	into	account.		
An	additional	interesting	comment	is	that	it	is	equivalent	to	perform	

the	tilts	at	positive	than	at	negative	angles.	This	sentence	is	extracted	
by	looking	at	the	normalized	MSE	plot	of	the	first	lens	L1	and	realizing	
that	a	perfect	reconstruction	is	retrieved	at	both	sides	of	the	0	case	
since	there	are	two	symmetrical	points	of	MSE	=	0	at	the	solid	black	
line.	 This	 fact	 makes	 sense	 since	 a	 spherical	 lens	 tilt	 at	 positive	
faceform	angle	produces	 the	same	Sturm	interval	of	astigmatism	by	
oblique	incidence	than	the	same	tilt	on	the	opposite	angular	direction.	

	

Fig.	3.		Numerical	results	when	encrypting	in	L1	lens.	(a)	Normalized	
MSE	 output	when	 the	 encryption	 is	 at	 2.5	 steps	 until	 10	 and	 the	
decryption	is	separately	performed	for	the	lenses	L1	(solid	black	line)	
and	L2	(dashed	black	 line)	with	a	continuous	variation	 from	‐15	 to	
+15.	(b)‐(e)	are	the	retrieved	images	corresponding	with	the	1	to	4	
red	points	at	the	graphs,	respectively.	

B. Encryption with tilted lens L2 

The	 second	 case	 proposes	 the	 same	 procedure	 previously	
presented	but	for	the	case	of	tilting	the	second	lens	L2	in	the	system.	
Results	can	be	seen	through	Fig.	4	in	a	parallel	manner	to	Fig.	3.	Once	
again,	perfect	outputs	are	retrieved	when	the	tilted	angle	of	L2	equals	
in	modulus	the	one	used	in	the	encryption.	Note	that	by	modulus	we	
are	referring	to	the	fact	(last	comment	on	previous	section)	regarding	
the	 symmetry	 in	 the	 tilts	 for	 producing	 the	 same	 Strum	 interval	 of	
astigmatism	 by	 oblique	 incidence.	 Those	 cases	 are	 identified	 by	 ⨯	



green	marks	at	the	dashed	black	line	(the	normalized	MSE	plot	for	the	
lens	L2	in	the	decryption).	
And	the	resulting	images	provided	when	no	tilt	is	considered	during	

the	decryption	and	corresponding	with	the	⨯	red	marks	are	presented	
through	the	images	included	at	Figs.	4b‐e.	Now,	we	can	see	that,	again,	
the	result	becomes	to	be	noisier	as	the	tilted	angle	of	L2	is	increased	
(2.5/0,	 5/0,	 7.5/0	 and	 10/0	 at	 L1/L2).	 And	 finally	 the	 input	
object	 information	 is	 completely	 lost:	 no	 object	 structure	 can	 be	
identified	from	Fig.	3d	(0/7.5	at	L1/L2).	This	case	corresponds	with	a	
normalized	MSE	value	of	70%.		
Regarding	 the	 previous	 results,	 70%	 of	 normalized	 MSE	 in	 the	

second	 lens	case	destroys	much	more	the	spatial	object	 information	
than	100%	of	normalized	MSE	for	the	same	tilted	angle	but	in	the	first	
lens	L1.	This	fact	means	that	the	encryption	system	is	more	sensitive	to	
tilts	in	the	second	lens	than	in	the	first	one.	

	

Fig.	4.		Numerical	results	when	encrypting	in	L2	lens.	(a)	Normalized	
MSE	 output	when	 the	 encryption	 is	 at	 2.5	 steps	 until	 10	 and	 the	
decryption	is	separately	performed	for	the	lenses	L1	(solid	black	line)	
and	L2	(dashed	black	 line)	with	a	continuous	variation	from	‐15	 to	
+15.	(b)‐(e)	are	the	retrieved	images	corresponding	with	the	1	to	4	
red	points	at	the	graphs,	respectively.	

C. Encryption with tilted both lenses L1 and L2 

To	complete	our	numerical	 investigation,	Fig.	5	presents	here	 the	
results	provided	by	the	system	in	which	both	spherical	lenses	are	tilted	
the	same	angle	 from	0	 to	10	at	2.5	steps,	 that	 is:	2.5/2.5,	5/5,	
7.5/7.5	 and	 10/10	 at	 L1/L2	 according	 to	 our	 nomenclature.	
Globally,	a	similar	behavior	to	the	first	case	(encryption	with	tilted	lens	
L1)	is	obtained	but	with	even	more	sensitivity	to	the	encodings	since	
full	object	information	is	completely	lost	at	lower	tilted	angles.	
From	Fig.	5a	we	can	see	as	a	perfect	image	(MSE	=	0)	is	no	longer	

recovered	at	any	green	mark	because,	although	the	tilted	angle	of	the	
first	lens	L1	will	be	known,	the	tilted	angle	of	the	second	lens	L2	will	

always	 destroy	 the	 recovered	 image	 quality.	 This	 fact	 can	 be	 seen	
through	the	images	included	in	Figs.	5b‐e.	Note	that	these	images	are	
exactly	 the	 same	 images	 included	 in	 Figs.	 4b‐e	 because	 we	 are	
supposing	to	decrypt	with	perfect	key	 for	 lens	L1	(no	error	 in	tilted	
lens	L1	or	equivalently	0	of	tilt)	while	no	information	is	accessible	for	
the	lens	L2.		
Finally,	 the	 retrieved	 decrypted	 images	 in	 the	 case	 where	 no	

information	about	the	tilted	keys	are	available	are	included	in	Figs.	5f‐i.	
We	can	see	as	the	spatial	information	of	the	input	object	is	complete	
lost	 above	 5/5	 at	 L1/L2.	 This	 value	 suggests	 that	 tilted	 lenses	 as	
encryption	 key	 are	 useful	 since	 small	 angles	 do	 not	 increase	 the	
amount	of	aberrations	in	the	system	while	the	encrypted	information	
cannot	be	retrieved.		

	

Fig.	5.	 	Numerical	 results	when	encrypting	 in	both	L!/L2	 lenses.	 (a)	
Normalized	MSE	output	when	the	encryption	is	at	2.5	steps	until	10	
and	 the	 decryption	 is	 separately	 performed	 for	 the	 lenses	 L1	 (solid	
black	line)	and	L2	(dashed	black	line)	with	a	continuous	variation	from	
‐15	to	+15.	(b)‐(e)	and	(f)‐(i)	are	the	retrieved	images	corresponding	
with	the	1	to	4	green	and	red	points	at	the	graphs,	respectively.	

4. EXPERIMENTAL VALIDATION 
A	 preliminary	 experimental	 validation	 of	 hybrid	
encryption/decryption	process	based	on	tilted	lenses	is	presented	in	
this	 section.	 By	 hybrid	 we	 mean	 that	 we	 are	 providing	 numerical	
encryption	 using	 tilted	 lens	 angles	 as	 encryption	 keys	 but	 the	
decryption	process	is	implemented	with	an	optical	experiment	at	the	



lab.	 However	 and	 for	 the	 sake	 of	 simplicity	 at	 the	 lab,	 the	 hybrid	
experimental	validation	 is	 implemented	using	a	Fourier	 transformer	
scheme	instead	of	the	FrFT	configuration	used	in	previous	section.		
For	the	encryption,	we	have	used	an	adapted	numerical	simulator	

from	the	previous	FrFT	script,	adapted	in	the	sense	of	providing	image	
encryption	 using	 Fourier	 transformers.	 This	 numerical	 encrypter	
employs	 several	 approximations	 that	 allow	 a	 realization	 of	 such	 a	
complicated	 experiment:	 1)	 We	 consider	 only	 a	 Fourier	 transform	
system;	 2)	 We	 use	 two	 liquid‐crystal	 displays	 to	 introduce	 the	
encrypted	image	and	the	decryption	mask,	but	we	use	them	as	phase‐
only	 modulators.	 Therefore,	 only	 the	 phase	 of	 the	 numerically	
calculated	diffractive	elements	is	useful	for	the	experiment,	while	the	
modulus	 information	 is	 discarded.	 The	 reason	 for	 that	 drastic	
approximation	 is	 that	 liquid‐crystal	 displays	 can	 operate	 easily	 as	
phase‐only	 spatial	 light	 modulators	 (by	 aligning	 the	 input	 linear	
polarization	with	the	liquid	crystal	director),	but	they	can	not	display	
complex	valued	directly.	

	

	

Fig.	6.	Experimental	demonstrator	for	decryption	of	images	encrypted	
by	using	tilted	spherical	lenses:	(a)	scheme	of	the	layout	and	(b)	picture	
of	 the	 experimental	 layout	 assembled	 at	 the	 lab	 (same	 perspective	
than	the	scheme).	

Figure	6	shows	both	a	scheme	and	a	picture	of	the	optical	system	
built	at	the	laboratory	for	decryption.	Note	that	the	encryption	is	done	
numerically	with	the	same	system	but	in	reverse	sense.	Figure	6	shows	
a	He‐Ne	laser	with	a	wavelength	of	632.8	nm	which	is	spatially	filtered	
and	the	beam	is	collimated	using	a	first	spherical	lens	(L1	at	Fig.	6a).	We	
used	 two	 liquid	 crystal	 on	 silicon	 (LCOS)	 spatial	 light	 modulators	
(SLM)	 to	 display	 two	 different	 phase	 masks:	 the	 first	 one	 (SLM1)	
corresponding	 to	 the	 IP/RM1	 plane,	 and	 a	 second	 one	 (SLM2)	 to	
display	RM2.	These	are	two	displays	from	Hamamatsu,	parallel	aligned	
PAL‐LCOS‐SLM	model	X10468‐01,	with	792×600	pixels,	 20×20	μm2	
pixel	size	and	video‐rate	operation	(60	Hz).	The	liquid	crystal	director	
is	oriented	horizontal	with	respect	to	the	laboratory	frame.	The	devices	
are	 programmable	 linear	 retarders,	where	 the	 extraordinary	 axis	 is	
oriented	 horizontally,	 therefore	 producing	 a	 phase‐only	 modulation	
for	 linearly	 polarized	 light	 oriented	 in	 this	 direction.	 A	 half‐wave	
retarder	(HWR)	is	mounted	onto	a	rotatable	mount	and	introduced	to	
control	the	orientation	of	the	linear	polarization	of	the	input	light	beam.	
This	way	we	orient	the	polarization	to	be	parallel	to	the	liquid	crystal	
director	of	 the	displays.	But,	 since	 the	beam‐splitters	may	 introduce	
some	modification	 in	 the	 state	 of	 polarization,	 two	 linear	 polarizers	
(LP1	 and	 LP2)	 are	 introduced	 in	 order	 to	 ensure	 perfect	 linearly	
polarized	 light	 impinging	 the	SLMs.	The	 two	SLMs	produce	a	phase	
retardation	 variation	 that	 exceeds	 2	 radians	 for	 the	 operating	
wavelength	of	633	nm.	
Because	the	SLMs	are	reflective	devices,	two	non‐polarizing	beam	

splitters	 (NPBS)	are	 included	 in	 the	optical	 architecture.	The	optical	
Fourier	 transform	 relation	 from	 SLM1	 to	 SLM2	 is	 performed	with	 a	
combination	of	two	convergent	spherical	lenses	(L2	and	L3	at	Fig.	6a)	
having	the	same	focal	length	(100	mm)	and	separated	215	mm.	The	
distance	between	SLM1‐L2	and	L3‐SLM2	is	the	same	and	equal	to	747	
mm.	This	is	very	relevant	since	the	success	of	the	decryption	process	
critically	depends	on	 the	 correct	matching	between	 the	 scale	 of	 the	
optical	Fourier	transform	implemented	in	the	system	and	the	digital	
Fourier	transform	used	to	calculate	the	mask	in	SLM2.	Adjusting	the	
distance	between	lenses	L2	and	L3	allows	varying	the	 focal	 length	of	
their	 combination,	 and	 therefore	 changing	 the	 scale	 of	 the	 optical	



Fourier	transform.	Finally,	another	spherical	lens	L4	performs	another	
Fourier	transform	and	produces	an	image	of	the	SLM1	plane	onto	the	
final	CCD	camera.		
As	mentioned	before,	we	use	this	system	to	experimentally	validate	

a	 hybrid	 encryption/decryption	 process.	 Regarding	 this	 fact,	 one	
important	aspect	to	consider	is	 that	the	SLMs	operate	as	phase‐only	
modulators.	Therefore,	only	the	phase	content	of	the	encrypted	image	
is	displayed	(the	amplitude	distribution	is	discarded,	made	it	equal	to	
one	in	all	pixels).	We	selected	this	option	instead	of	using	an	additional	
SLM	 to	 implement	 the	 amplitude	 distribution	 in	 order	 to	 keep	 the	
optical	 system	 simpler.	 Nevertheless,	 the	 fact	 that	 we	 introduce	 a	
random	 phase	 pattern	 (RM1)	 on	 the	 input	 image	 reproduces	 the	
classical	technique	employed	in	computer‐generated	holography	used	
reduce	 the	 impact	 of	 the	phase‐only	operation	 in	Fourier	 transform	
holograms	[44].	However,	 this	 introduces	an	additional	complication	
in	the	decryption	process,	especially	because	adds	speckle	noise	in	the	
reconstructed	image.	
Thus,	 the	 digital	 process	 to	 encode	 the	 encrypted	 image	 for	 this	

experiment	consists	 in	 the	 following	process	which	must	be	 read	 in	
reverse	 sense	 to	 the	 layout	 included	 at	 Fig.	 6:	 1)	 the	 initial	 regular	
amplitude	 image	 (IP)	 is	 combined	 with	 a	 random	 phase	 pattern	
(RM1);	 2)	 a	 numerical	 propagation	 until	 the	 lens	 L4	 is	 digitally	
performed;	3)	the	complex	field	is	multiplied	by	a	titled	lens	L4;	4)	an	
additional	numerical	propagation	until	 the	SLM2	plane	 is	performed	
(note	 that	 the	 IP	 and	 the	 SLM2	 planes	 are	 related	 by	 a	 Fourier	
transform	but	we	have	used	two	numerical	propagations	to	consider	
the	tilt	at	the	lens	L4	for	the	encryption);	5)	the	amplitude	at	the	SLM2	
plane	 is	 discarded,	keeping	only	 the	phase	distribution;	6)	a	 second	
random	 key	 (RM2)	 is	 added	 to	 this	 phase	 distribution;	 7)	 finally,	
another	 digital	 Fourier	 transform	 is	 performed	 and	 the	 phase	
distribution	of	the	resulting	pattern	becomes	the	encrypted	pattern	to	
be	displayed	on	SLM1	for	the	decryption	process.	Thus,	only	one	tilted	
lens	 is	 considered	 in	 this	 hybrid	 experimental	 validation	 of	 the	
proposed	 concept.	 Note	 in	 addition	 that,	 as	 we	 previously	 stated,	
encryption	 is	 performed	 considering	 the	 conjugate	 spatial	
distributions	of	the	optical	elements	used	in	the	decryption.	
Finally,	another	practical	aspect	to	consider	is	related	to	the	fringing	

effect	that	affects	SLMs	[45].	This	electronic	effect	prevents	the	correct	
display	of	phase	values	when	rapid	spatial	variations	are	present	in	the	
image.	In	order	to	minimize	this	effect,	we	selected	the	random	phase	
key	 RM2	made	 of	 macro‐pixels,	 where	 random	 phase	 values	 were	
selected	in	squares	of	8x8	pixels	filling	the	complete	image.	
And	then,	the	decryption	process	is	performed	optically.	The	system	

in	 Fig.	 6	performs	 an	 optical	Fourier	 transform	 from	SLM1	plane	 to	
SLM2	plane.	Thus,	SLM2	 is	used	 to	display	 the	opposite	random	key	
RM2.	The	final	optical	Fourier	transform	produces	the	retrieved	image	
on	 the	 CCD	 plane.	 Figure	 7	 includes	 the	 outputs	 of	 the	 optical	
decryption	 experiment	 where	 the	 input	 object	 is	 an	 A	 letter.	 We	
selected	 this	simpler	object	 in	comparison	with	 the	complex	 images	
presented	at	previous	sections	due	to	the	difficulty	in	the	experiment.	
Figure	7a	shows	the	retrieved	image	when	no	tilt	is	used	at	lens	L4	in	
the	 encryption	 branch.	This	 is	 the	 ideal	 result	 and	we	 can	 see	 as	 it	
contains	a	lot	of	speckle	noise.	The	speckle	noise	is	generated	due	to	
the	coherence	of	the	illumination	laser	light	when	passing	through	the	
optical	elements	of	the	layout,	and	because	of	the	phase‐only	operation	
required	 to	 display	 the	 encrypted	 image	 on	 the	 SLM1.	 Despite	 the	
speckle	 noise,	 the	 contour	 of	 an	 A	 letter	 can	 be	 identified	 in	 the	
reconstruction.	
However,	no	information	is	available	when	the	encrypted	image	is	

numerically	generated	by	considering	a	tilt	of	10	at	the	lens	L4	of	the	
experimental	layout.	The	resulting	image	is	included	in	Fig.	7b	showing	
as	no	trace	of	the	A	letter	is	retrieved.	

	

Fig.	 7.	 Experimental	 results	 obtained	 when	 using	 numerical	
encryption	 with	 tilted	 lenses	 and	 optical	 decryption	 with	 untilted	
lenses:	 (a)	 the	 output	when	 no	 tilt	 is	 considered	 in	 the	 encryption	
process	and	(b)	the	output	when	the	encryption	is	performed	with	10	
of	tilt	at	L4.	

Finally,	an	additional	experiment	is	performed	in	order	to	improve	
image	 quality	 in	 our	 approach.	 We	 have	 considered	 different	
realizations	of	the	same	experiment	but	changing	not	the	tilted	angle	
key	but	the	encoding	masks.	Thus,	since	speckle	is	mainly	generated	by	
those	 masks,	 incoherent	 addition	 of	 several	 reconstruction	 reduces	
speckle	 noise	 in	 the	 retrieved	 image.	 Figure	 8	 includes	 the	
experimental	results	for	(a)	single	realization	(same	output	than	in	Fig.	
7a),	(b)	3	realizations,	(c)	5	realizations	and	(d)	10	realizations.	The	10	
realizations	 (temporal	sequence)	 are	also	 included	 in	a	video	movie	
(Visualization1.mov).	It	is	visible	how,	as	expected,	as	the	number	of	
different	 realizations	 that	 are	 integrated	 increases	 the	 noise	 gets	
significantly	reduced	and	allows	a	better	reproduction	of	the	decrypted	
image.	

	

Fig.	8.		Experimental	images	obtained	by	(a)	a	single	experiment,	and	
when	considering	the	incoherent	averaging	of	(b)	3,	(c)	5	and	(d)	10	
realizations.	(Visualization1.avi,	1.1MB).	

5. CONCLUSIONS 
In	 this	 paper	 we	 have	 reported	 on	 a	 novel	 concept	 for	 optical	
encryption/decryption	of	object	information.	The	concept	is	based	on	
the	tilt	produced	in	the	lenses	used	in	the	encryption	process.	When	a	
lens	is	tilted,	the	principal	powers	and	meridians	usually	change	due	to	
the	generation	of	astigmatism	by	oblique	incidence.	This	fact	provides	
an	additional	key	to	perform	encoding/decoding	and	improve	security	
in	encryption	systems.		
The	 proposed	 approach	 is	 theoretically	 described	 using	 two	

Lohmann’s	 type	I	systems	in	cascade.	This	mathematical	description	
presents	 the	 general	 frame	 including	 any	 type	 of	 sphero‐cylindrical	
lenses	 and	 considering	 how	 the	 tilted	 angle	 modifies	 the	 principal	



dioptric	powers	and	meridians.	The	theory	involving	these	calculations	
is	 presented	 in	 virtue	 of	 the	 dioptric	 power	 matrix	 formalism	 and	
oblique	central	refraction	used	in	optometry	field.	
After	that,	simulation	results	validate	the	proposed	approach	from	

both	qualitative	and	quantitative	points	of	view.	Numerical	simulations	
are	presented	considering	the	same	two	Lohmann’s	type	I	systems	in	
cascade	 but	 using	 spherical	 lenses	 for	 the	 sake	 of	 simplicity.	 These	
numerical	 results	 outcome	 that	 almost	 spatial	 information	 of	 the	
encrypted	object	 is	completely	 lost	with	 tilts	around	5/5.	This	 is	a	
modest	tilt	which	highlight	a	strong	sensitivity	of	the	system	to	the	new	
encryption	key.		
And	finally,	a	laboratory	experiment	where	decryption	is	optically	

performed	 has	 also	 included	 in	 the	 manuscript.	 The	 experiment	
proposes	 a	 hybrid	 method	 in	 which	 the	 image	 is	 encrypted	
numerically	 and	 decrypted	 optically.	 For	 the	 experimental	
implementation,	we	have	selected	a	Fourier	transformer	configuration	
to	 simplify	 the	 experimental	 layout.	 The	 experiment	 shows	 how	
decryption	 is	not	possible	with	only	10	 of	 tilt	 in	one	of	 the	system	
lenses.	Nevertheless,	the	process	is	fully	dominated	by	speckle	and	the	
retrieved	image	contains	a	strong	speckle	noise.	Such	speckle	noise	can	
be	appreciably	reduced	by	averaging	some	decryptions,	as	it	has	also	
been	demonstrated.	
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